

Searches for Higgs Bosons Beyond the Standard Model with the CMS Experiment at the LHC

Roger Wolf

18./19. November 2014

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Road map...

- Short recap:
 - Higgs bosons what it is about?
 - What do we know about the Higgs boson and how much space is still left for new physics in the Higgs sector?
- Higgs decays to invisible ($H \rightarrow inv$.) and related statement on DM interactions.
- Search for additional supersymmetric Higgs bosons:
 - In the MSSM there are five Higgs bosons and we make strong statements on all of them!
 - There is one detour in this, on an analysis of LFV in the Higgs sector.

Disclaimer:

This is a personal choice and by no means complete.

About Higgs: a short recap...

• Need Higgs mechanism to explain how particles can have mass $\neq 0$ and at the same time $SU(2) \times U(1)$ symmetry can be source of electroweak interactions.

About Higgs: a short recap...

• Need Higgs mechanism to explain how particles can have mass $\neq 0$ and at the same time $SU(2) \times U(1)$ symmetry can be source of electroweak interactions.

- Symmetry inherent to a system but not to its energy ground state (\rightarrow quantum vacuum).
- In a quantum field theory (QFT) this can create new physical particles (→ Higgs boson(s)).

Non-zero vacuum expectation value v

About Higgs: a short recap...

• Need Higgs mechanism to explain how particles can have mass $\neq 0$ and at the same time $SU(2) \times U(1)$ symmetry can be source of electroweak interactions.

- Symmetry inherent to a system but not to its energy ground state (\rightarrow quantum vacuum).
- In a quantum field theory (QFT) this can create new physical particles (→ Higgs boson(s)).

Non-zero vacuum expectation value v

• A Higgs boson has very a peculiar coupling structure, needed to fulfill the symmetry of the system (example for fermions):

$$\phi = \begin{pmatrix} 0 \\ v + \frac{H}{\sqrt{2}} \end{pmatrix}$$
$$\mathcal{L}^{\text{Yukawa}} = -y_f \left(v + \frac{H}{\sqrt{2}} \right) f \bar{f} = -\left(m_f + \frac{m_f}{\sqrt{2}v} H \right) f \bar{f}$$

- We know its a boson.
- We know its mass (CMS-PAS-HIG-14-009): $m_H = 125.03 \pm_{0.27}^{0.26} \text{ (stat.) } \pm_{0.15}^{0.13} \text{ (syst.)GeV}$

- We know it exists (arXiv:1207.7235)!
- We know its a boson.
- We know its mass (CMS-PAS-HIG-14-009): $m_H = 125.03 \pm_{0.27}^{0.26} \text{ (stat.) } \pm_{0.15}^{0.13} \text{ (syst.)GeV}$
- We have strong evidence that it couples to fermions (arXiv:1401.6527).
- We have reasons to believe that it is a spin 0 *CP* even object (arXiv:1312.5353).

4th of July 2012

- We know it exists (arXiv:1207.7235)!
- We know its a boson.
- We know its mass (CMS-PAS-HIG-14-009): $m_H = 125.03 \pm_{0.27}^{0.26} \text{ (stat.) } \pm_{0.15}^{0.13} \text{ (syst.)GeV}$
- We have strong evidence that it couples to fermions (arXiv:1401.6527).
- We have reasons to believe that it is a spin 0 *CP* even object (arXiv:1312.5353).
- We know it's a Higgs boson!

Why it is not THE Higgs boson (of the SM)⁽¹⁾

Karlsruhe Institute of Technology

- Gravity is not included in the SM.
- The SM suffers from the hierarchy problem.
- Dark matter is not included in the SM.
- Neutrino masses are not included in the SM.
- There are known deviations in $a_{\mu} \equiv \frac{g_{\mu}-2}{2}$ from the SM expectation (3.6 σ unresolved).

⁽¹⁾ Arguments stolen from S. Heinemeyer (HH Higgs workshop 2014)

Why it is not THE Higgs boson (of the SM)⁽¹⁾

- Gravity is not included in the SM.
- The SM suffers from the hierarchy problem.
- Dark matter is not included in the SM.
- Neutrino masses are not included in the SM.
- There are known deviations in $a_{\mu} \equiv \frac{g_{\mu}-2}{2}$ from the SM expectation (3.6 σ unresolved).

- There must be physics beyond the SM!
- At what scale does it set in?
- (How) Does it influence the Higgs sector?

⁽¹⁾ Arguments stolen from S. Heinemeyer (HH Higgs workshop 2014)

Space left for new physics in the Higgs sector

• Couplings are determined within $\pm 15\%$ to $\pm 20\%$ accuracy.

Space left for new physics in the Higgs sector

- Couplings are determined within $\pm 15\%$ to $\pm 20\%$ accuracy.
- Fixing all tree-level couplings to the SM (κ_i, i = W, Z, τ, b, t) & introducing effective couplings for loop induced processes (κ_g, κ_γ) leaves room for BR_{BSM} ≤ 0.32 @ 95% CL.

Space left for new physics in the Higgs sector

- Couplings are determined within $\pm 15\%$ to $\pm 20\%$ accuracy.
- Fixing all tree-level couplings to the SM (κ_i, i = W, Z, τ, b, t) & introducing effective couplings for loop induced processes (κ_g, κ_γ) leaves room for BR_{BSM} ≤ 0.32 @ 95% CL.
- Adding maximal freedom to the fit leaves room for $BR_{BSM} \le 0.58$ @ 95% CL.

Direct searches for $H \rightarrow \text{invisible}$ (arXiv:1404.1344)

SUSY particles as DM candidates

Extension of SM by a last remaining, non-trivial, symmetry operation (boson \leftrightarrow • fermion), SUSY, can cure many shortcomings of SM:

Standard particles

- E.g. lightest SUSY particle (LSP) perfect candidate for χ .
- **Problem:** SUSY itself is broken! ullet

• Five neutral Higgs bosons predicted:

$$H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix}$$
, $Y_{H_1} = -1$, v_1 : VEV₁

$$H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}$$
, $Y_{H_2} = +1$, v_2 : VEV₂

$$N_{\text{ndof}} = 8 \quad -3 = 5$$
$$W, Z \quad H^{+/-}, H, h, A$$

• MSSM mass requirements at tree level:

two free parameters: m_A , $\tan\beta = {
m v_1}/{
m v_2}$

$$\begin{split} m_{H^{+/-}}^2 &= m_A^2 + m_W^2 \\ m_{H, h}^2 &= \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{\left(m_A^2 + m_Z^2\right)^2} \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm m_Z^2 + m_Z^2 \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm m_Z^2 + m_Z^2 \right) \\ & - \frac{1}{2} \left(m_A^2 + m_Z^2 \pm m_Z^2 + m_Z^2 + m_Z^2 \right) \\ & - \frac{1}{2} \left(m_Z^2 + m_Z^2 + m_Z^2 + m_Z^2 + m_Z^2 \right) \\ & - \frac{1}{2} \left(m_Z^2 + m_Z^2 + m_Z^2 + m_Z^2 + m_Z^2 \right) \\ & - \frac{1}{2} \left($$

Enhancement of down-type couplings

• In MSSM coupling to down-type fermions enhanced for $\tan \beta \gg 1$.

- Interesting decay channels:
 - H o au au ($\hat{\kappa}_{ au} = 0.84 \pm^{0.19}_{0.18}$)
 - $H \rightarrow bb$ ($\hat{\kappa}_b = 0.74 \pm 0.33_{0.29}^{0.33}$)
- Interesting production modes:

CMS-PAS-HIG-14-009

						$\overline{\mathcal{V}}_{e}, \overline{\mathcal{V}}_{\mu}$	d				
	Decay Mode	\mathbf{BR}				μ.					
	$\tau \to e\nu_e\nu_\tau$	17.83%	i i i i i i i i i i i i i i i i i i i		/	¥					
	$\tau \to \mu \nu_{\mu} \nu_{\tau}$	17.41%	of a lode		W^-	\rightarrow e^- ,	μ^-, \overline{u}				
	$\tau \rightarrow 1$ -prong ν_{τ}	37.10%		τ^{-}	x						
	$\tau \rightarrow 3$ -prong ν_{τ}	15.20%			ν_{τ}						
							12				
•	Coorch for Qiagla	tod bigb r	- lontona								
•	Search for z isola	ted nigh p	Tiepton	5		$ \mu $		A			
	(<i>c</i> , <i>µ</i> , <i>'n</i>).			1							
		_				Mar Mark					
Reduce obvious backgrounds (use on											
	E_T) & reconstruct	:t $m_{ au au}$.									
•	Exploit characteri	stics of pr	oduction	duction			Six docay mode	<u>.</u> .			
	mode to increase	sensitivity	/.	$ \tau_h $			Six decay modes	٥.			
							$ au_h au_h, \ \mu au_h, \ e au_h,$				
					•		$e\mu$, $\mu\mu$, ee				

Reconstruction of hadronic τ

- Exploit particle flow algorithm: distinguish between γ , neutral and charged hadron.
 - Isolation (based on energy deposits in vicinity of reconstructed τ_h candidate).
 - Discrimination against electrons (based on shower shape & E/p).
 - Discrimination against muons.
 - Allows for independent cross check of τ_h energy calibration (use 3% uncert.).
 - Efficiency $\approx 60\%$ ($\approx 3\%$ fakerate), flat as function of $p_T(\tau_h)$ and N(vtx).

Likelihood approach:

• ME for leptonic τ decay or phase space kinematics of 2-body decay of τ_h .

Х

- Estimate of expected E_T resolution on event by event basis.
- Inputs: visible decay products, x-, ycomponent of \mathcal{E}_T .
- Free parameters: φ , θ^* , ($m_{\nu\nu}$) per τ .

• Find minimum of \mathcal{L} for given $m_{\tau\tau}$ and scan over all possible values of $m_{\tau\tau}$ to find global minimum.

μτ

Control of backgrounds

Karlsruhe Institute of Technology

• Exploit enhancement of coupling to down-type fermions for initial state ($\rightarrow b$ -quarks).

• Sensitive to both production modes!

• Single narrow resonance search in $gg \rightarrow \phi (gg\phi)$ & $gg \rightarrow bb\phi (bb\phi)$ production mode:

- Most probable value and 2D limit contour from scan of likelihood function (200×200 NLL points).
- Find DB of full likelihood scan in 3D ($gg\phi$, $bb\phi$, m_{ϕ}) on supporting TWiki for arXiv:1408.3316.

Model independent limits (1D)

• 1D limit contours obtained from 2D by profiling non-observed component:

Sensitivity to h(125) of ~2.5 $\sigma_{_{\rm SM}}$

Limits in full MSSM benchmark scenarios

• Old method: h(125) ignored in statistical inference:

- Note: h(125) has been observed!
- With increasing sensitivity new statistical interpretation is needed: "1 Higgs vs 3 Higgses".

 $q_{\text{MSSM/BG}} = \frac{\mathcal{L}((N|(S_{\text{MSSM}}+B),\hat{\theta}_{MSSM}))}{\mathcal{L}(N|B,\hat{\theta}_B)}$

Limits in full MSSM benchmark scenarios

• New method: h(125) taken into account in test statistic:

- Note: h(125) has been observed!
- With increasing sensitivity new statistical interpretation is needed: "1 Higgs vs 3 Higgses".

 $q_{\text{MSSM/BG}} = \frac{\mathcal{L}\left((N|(S_{\text{MSSM}}+B),\hat{\theta}_{MSSM})\right)}{\mathcal{L}\left(N|(S_{\text{SM}}+B),\hat{\theta}_{SM}\right)}$

More benchmark scenarios...

(arXiv:1302.7033)

$H \rightarrow \mu \tau$ LFV Higgs couplings (CMS-PAS-HIG-14-005)

- SM forbids LFV couplings at tree level.
- Three couplings are possible: au o e, $au o \mu$, $\mu o e$.
- LVF could take place in Higgs sector. Limits in literature:
 - $BR(H \rightarrow e\mu) = \mathcal{O}(10^{-8})$.
 - $BR(H \to e\tau) = \mathcal{O}(0.1)$.
 - $BR(H \to \mu \tau) = \mathcal{O}(0.1).$
- $H \rightarrow \tau \tau_{\mu}/\mu \tau_{e}$ analysis w/ two specialties:
 - $p_T(\mu)$ is harder (\rightarrow less $\nu's$ in the decay).
 - $\nu's$ are more collinear. Use of collinear approximation for $m_{ au au}$.

• Expect signal in *top* sector:

Charged Higgs boson search ($H^{+/-} \rightarrow \tau \nu$)

- Most sensitive decay channel (cf neutral Higgs searches).
- Concentrate on hadronic decay of $W \rightarrow \bullet$ Extending mass range of search by well defined use of m_T for sig extraction.
- $180 \text{ GeV} \le m_{H^{+/-}} \le 600 \text{ GeV}.$

Charged Higgs boson search ($H^{+/-} \rightarrow \tau \nu$)

• Translated into m_{H^+} - $\tan\beta$ plane.

Charged Higgs boson search ($H^{+/-} \rightarrow \tau \nu$)

19.7 fb⁻¹ (8 TeV) + 4.9 fb⁻¹ (7 TeV) • Translated into m_A - $\tan\beta$ plane. 09 ^B (MSSM,SM)<0.05 Observed 50 Expected Combining both measurement will close the plane in the ± 1σ Expected 40 ± 2σ Expected range $90 \le m_A \le 140$ GeV. 30 20 19.7 fb⁻¹ (8 TeV) tan β പ $m_{h,H}^{MSSM} \neq 125\pm3 \text{ GeV}$ 10 lan CMS MSSM m^{mod-} scenario 60 60 Preliminary 200 400 600 800 1000 m, [GeV] $\mathbf{t} \rightarrow \mathbf{H}^{\dagger}\mathbf{b}, \mathbf{H}^{\dagger} \rightarrow \tau^{\dagger}\nu$ 50 50 τ_h+jets final state MSSM m $pp \rightarrow \bar{t}(b)H^{\dagger}, H^{\dagger} \rightarrow \tau^{\dagger}v_{\tau}$ 40 τ_h +jets final state 40 ---- Observed MSSM m -- Observed $\pm 1\sigma$ (th.) Observed Excluded 30 30 - Observed $\pm 1\sigma$ (th.) ----- Expected median ± 1σ Excluded --- Expected median ± 2σ 20 ---- Expected median \pm 1 σ 20 ----- Expected median ± 2σ $\frac{1}{2}$ m_b^{MSSM} \neq 125±3 GeV 10 10 0⊑ 90 140 100 110 120 130 m_A (GeV) m₄ (GeV)

Conclusions

- LHC had an extremely successful run-1 data taking period.
- Greatest prey was the Higgs boson!
- Unfortunately no further new physics discovered, yet. Good hunting grounds are the top and the Higgs sector, apart from conventional SUSY harvesting.
- CMS consolidating BSM Higgs searches on LHC-1 dataset by end of this year.

- Shown here only a very small and personal excerpt of most important results (others will be come more interesting from 2015 on):
 - $X \rightarrow HH$ searches (in 4b CMS-PAS-HIG-14-013 and $2b2\gamma$ CMS-PAS-HIG-13-032 final states).
 - $A \rightarrow Z(\ell \ell)h(bb)$ searches (CMS-PAS-HIG-14-011), w/ first interpretations in general 2HDMs.

Conclusions

Ja, der größte

Bock, den ich je

geschossen habe.

- LHC had an extremely successful run-1 data taking period.
- Greatest prey was the Higgs boson!
- Unfortunately no further new physics discovered, forward to LHC yet. Good hunting grounds are the top and the Higgs sector, apart from conventional SUSY harvesting.
- CMS consolidating BSM Higg 1 dataset by end of this
- O Tand personal excerpt of most important results (others) Shown here on from 2015 on): will be comp

Aber das is

rur

das Hig

- $X \to H$ fes (in 4b CMS-PAS-HIG-14-013 and $2b2\gamma$ CMS-PAS-HIG-13-032 final states).
- $A \rightarrow Z(\ell \ell) h(bb)$ searches (CMS-PAS-HIG-14-011), w/ first interpretations in general 2HDMs.

Charged Higgs boson search ($H^{+/-} \rightarrow tb$)

• Start off from regular $t\bar{t}$ analysis in the $\mu\tau_h$ and the $\ell\ell'$ channel ($\ell, \ell' = e, \mu$):

Charged Higgs boson search ($H^{+/-} \rightarrow tb$)

^{stents} 10⁴

 $e\mu$

Diboson

W,multijets

CMS preliminary, Vs=8 TeV, | L=19.7 fb⁻¹

Charged Higgs boson search ($H^{+/-} \rightarrow cs$)

- Start off from regular $t\bar{t}$ analysis in $\mu + jet$ channel (based on 20fb⁻¹ on 8 TeV).
- Reconstruct m_W from kinematic fit (using $m_t = 172.5$ GeV).

Performance of hadronic τ reconstruction

- Control efficiency within $\pm 7\%$ using tag & probe methods:
- Control τ_h energy scale within $\pm 3\%$ from fits to $m_{\tau, vis}$:

• Uncertainties further constrained by maximum likelihood fit in the statistical inference for signal extraction.

Performance of hadronic τ reconstruction

• Efficiency $\approx 60\%$ ($\approx 3\%$ fake rate), flat for $p_T(\tau) > 30$ GeV & independent from PU.

MSSM model dependency

- In the SM analysis we chose nearly 100 different event categories. Why not choose more categories in MSSM analysis?
- In $gg\phi p_T$ spectra of Higgs bosons change with other particles in loop:

- Checked with pure *b* and pure *t* in loop from pythia that current categorization is not sensitive.
- Refrained from categorization that depends on Higgs p_T .

		0-jet	1-jet		2-jet	
				p _T ^{ττ} > 100 GeV	m _{ji} > 500 GeV Δη _{jj} > 3.5	p _T ^π > 100 GeV m _{jj} > 700 GeV Δη _{jj} > 4.0
	$p_{\tau}^{\text{th}} > 45 \text{ GeV}$	high-p _T ^{τh}	$high-p_{T}{}^{\tau h}$	high-p _T ^{πh} boosted	loose	tight
μτ _h	baseline	$\text{low-}p_{T}^{\text{th}}$	low-p _T ^{πh}		VBF tag	(2012 only)
	$p_T^{\tau h} > 45 \text{ GeV}$	high-p _T ^{τh}	-high-p ₁ τh-	high-p _T ^{τh} boosted	loose	tight VBE tag
eτ _h	baseline	low-p _T τh	$low-p_T^{ au h}$		VBF tag	(2012 only)
			$E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 GeV			
	р _т ^µ > 35 GeV	, high-p _T μ	high-p _T µ		loose	tight VBE tag
eμ	baseline	$low-p_T^\mu$	low	-p _T µ	VBF tag	(2012 only)
	p _T ^I > 35 GeV	high-p _T I	high-p _T I		2-jet	
ee, µµ	baseline	low-p _T I	low-p _T I			
T _h T _h (8 TeV only)	baseline		boosted	highly boosted	VBF tag	
			p _T ^π > 100 GeV	p _T ^π > 170 GeV	$\begin{array}{l} p_T^{rr} > 100 \; \text{GeV} \\ m_{jj} > 500 \; \text{GeV} \\ \left \Delta \eta_{jj} \right > 3.5 \end{array}$	

Model independent limits (2D)

Model independent limits (2D)

More benchmark scenarios... (new method)

More benchmark scenarios... (old method)

$H \rightarrow \mu \tau$ Input distributions

 $X \to HH$

- Within the SM $\sigma(gg \to HH, 8 \text{ TeV}) \approx 10 \text{ fb}^{-1}$ is out of reach for current analyses.
- But in BSM models like Warped Extra Dimensions (WED) $\sigma(H \rightarrow HH)$ can be enhanced by several orders of magnitude.
- This motivates searches for resonant decay into ("SM") Higgs bosons:

- Same γ reconstruction as for cut based $H \rightarrow \gamma \gamma$ SM cross check analysis.
- Two event categories: medium(high) purity \rightarrow 1(2) b-tagged jets.
- Improved (*b*-)jet energy resolution by kinematic fit (cf. 4*b* analysis).

$X \to H(bb)H(bb)$

- Select 4 *b*-jets w/ highly efficient b-tagging algorithm (CVMVA $\epsilon = 75\%$, f = 3.4%).
- Improved (*b*-)jet energy resolution by kinematic fit (20-40%).
- Distinguish high(low) mass region for association of *b*-jets to h(125) candidate.

• Extract signal from parametric signal and BG model (\rightarrow BG: 20% $t\bar{t}$, 80% QCD).

$X \rightarrow H(bb)H(bb)$: Template validation

