# **Characterization of Edgeless Sensors**

#### Summer Students 2014



#### Damaris Tartarotti Maimone

damaris.tm2@gmail.com

#### Group: Photon Science Detector System

#### Supervisor: Jiaguo Zhang



UNICAMP



Universidade Estadual de Campinas – SP- Brazil http://portal.ifi.unicamp.br/





# Outline

- Motivation of edgeless detectors
- Introduction to edgeless sensors and Medipix chips
- Sensors under investigation
- > Measurement results:
  - I V characteristics
  - Dark field and flat field images
  - Object Images
  - Energy Calibration





### **Edgeless Detectors - Motivation**

Drawback of conventional detectors against edgeless detectors

Miss of information in dead region problems for image reconstruction



#### **Edgeless Sensors and Medipix chips**

- Conventional sensors : Current Collection Ring (CCR) and Guard Rings (GR) in conventional sensors
- Edgeless sensors : Deep Reactive Ion Etching (DRIE), side implantation with Phosphorous or Borons, Aluminum Metallization, Passivation on top etc.

#### Ideal Edgeless Sensor:

- Good Quantum efficiency
- Low noise interprivation low leakage current and interprivation capacitance
- High breakdown voltage
- Small last pixel-to-edge distance
- Good sensitivity to low energy photons for edge pixels

Medipix family chips : Medipix1, Medipix2, Medipix3 and Medipix3RX



# From LAMBDA to Edgeless LAMBDA

Edgeless detectors as part of LAMBDA ongoing FS-DS project



LAMBDA: Large Area Medipix Based Array

- Si sensor with 512 x 1536 (28 mm x 85 mm)
- 2 x 6 Medipix chips
- High-frame-rate readout system (2000 fps)

Silicon pixel sensor

Low Temperature Co-fired Ceramic (LTCC) board

High-speed IO

ASIC chip

Damaris

ASIC chip

- New future Developments: edgeless LAMBDA
  - Edgeless sensor compatible with Medipix chips
  - Medipix chips with TSV+RDL implemented
  - Ball Grid Array to board
  - <u>My task:</u> Characterization of edgeless sensors (without gard rings) coupled to conventional Medipix3 chips (without TSV + RDL)

# **Measured three different test structures**







#### No Current Collection Ring

#### Current Collection Ring

#### **Current Collection Ring**

| Polarity               | n-on-p                                | Polarity               | n-on-n                              | Polarity               | n-on-p                                |
|------------------------|---------------------------------------|------------------------|-------------------------------------|------------------------|---------------------------------------|
| Thickness              | 500 µm                                | Thickness              | 500 µm                              | Thickness              | 500 µm                                |
| Doping                 | 1.1×10 <sup>12</sup> cm <sup>-3</sup> | Doping                 | 7×10 <sup>11</sup> cm <sup>-3</sup> | Doping                 | 1.1×10 <sup>12</sup> cm <sup>-3</sup> |
| V <sub>dep</sub>       | 208.9 V                               | V <sub>dep</sub>       | 132.9 V                             | V <sub>dep</sub>       | 208.9 V                               |
| V <sub>breakdown</sub> | 22 V                                  | V <sub>breakdown</sub> | 190 V                               | V <sub>breakdown</sub> | 35 V                                  |
| V <sub>operation</sub> | 20 V                                  | V <sub>operation</sub> | 160 V, 170 V,<br>180 V, 190 V       | V <sub>operation</sub> | 20 V                                  |
| $W_{dep}$              | 154,7 µm                              | $W_{dep}$              | 500 µm                              | $W_{dep}$              | 154,7 µm                              |



#### **I-V curves, Equalization**



#### First and third sensor cannot depleted fully!



# Dark and Flat Field Images for the three samples

#### Dark Field Image



Flat Field Image

V = 50kV l = 40mA



# **Second Sample**

On increasing the applied voltage, the photons appear, but not all the pixels respond  $\$ 



Problem during production? vendor (Advacam) confirmed: due to backside oxide layer not completely removed!!



# **Object Image and Flat Field Corrected Image**

#### Raw Image of an Object (USB drive)



- Although the sensors are not fully depleted they can still work for imaging experiments
- Quality of the image after flat field correction gets better



# **Comparison Simulation and Experiment for first sample**



- Edge pixels count differently from central pixels
- The results from the simulated normalized current reproduces the measurement results





# **Comparison Simulation and Experiment for first sample**



 Prediction for a good sensor (full depletion) shows that the last few pixels counts much less than central pixels



# **Performance of Different Equalization Procedures**

#### Equalized with X-rays shows a better performance



Results derived from the flat field image

# **Performance of Different Equalization Procedures**

Equalized x-rays Equalized dark Image of an USB drive Image of an USB drive after flat field correction 

Object Image for Equalized DAC with X-rays is slightly better than object image for Equalized dark Damaris | Characterization of Edgeless Sensors | September, 2014 | Page 14

DESY

# **Energy Spectrum**



• Distortion in the energy spectrum due to charge summing



# **Energy Calibration**



#### Summary

Three edgeless samples were tested:

- I-V measurement: the first and the third sample cannot be fully depleted!
- Flat field images with X-ray tube: Problem found for n<sup>+</sup>n sensor (production problem?)
- Object (USB drive) images taken: Both n<sup>+</sup>p sensors work, but it is a pity that 350 µm thick Si cannot be depleted! ☺
- Normalized counts (charge-collection) from edge pixels understood and compared to I-V simulation results:
  - Simulation shows good agreement to measurement
  - Prediction done for good sensors which can be fully depleted
- Different Equalization Procedures
  - Equalization performed with X-rays shows a slightly better performance
- Energy Spectrum
  - Distortion caused by charge summing



# **Acknowledgments**

#### FS-DS

- > Prof. Dr. Heinz Graafsma
- > Jiaguo Zhang
- Stefanie Jack
- > David Pennicard
- > Fabian Westermeier
- > Aschkan Allahgholi
- > And all the FS-DS group!!!

#### Summer school organizers

- > Olaf Behnke
- > Doris Eckstein
- > Ute Micheelsen
- > Christina Tornau

#### Universidade Estadual de Campinas

- > Prof. Dr. Mônica Cotta
- > CAF Centro Acadêmico da Física
- Instituto de Física Gleb Wataghin



# Thanks for your attention!

