# Trigger threshold verification for the hadronic calorimeter prototype for the ILC

Lloyd Teh Tzer Tong 2014/09/10 DESY summer student session

# Content

- Introduction on ILC & ILD and the hadronic calorimeter engineering prototype
- Method of measurement
- Results

- The International Linear Collider
  - Center-of-mass energy of 500GeV e<sup>+</sup>e<sup>-</sup> linear collider
  - To be build in Japan
  - Precision measurement mainly Higgs, "LHC successor"

福島県





- The International Linear Collider
  - Center-of-mass energy of 500GeV e<sup>+</sup>e<sup>-</sup> linear collider
  - To be build in Japan
  - Precision measurement mainly Higgs, "LHC successor"
- The Internation Large Detector (ILD):
  - Particle detector being develop for the ILC
  - Excellent tracking and high granularity calorimetry systems. (In the order of 10<sup>6</sup> channels for hadron calorimeter)
  - Reconstruct the energy of individual particles using the Particle Flow approach.
- Analogue hadron calorimeter (AHCAL)
  - Scintillator tiles and silicon photomultipliers (SiPM)
  - Scintillation: light produced by the passage of particle
  - SiPM: avalanche photodiode array to generate analog signal from light





- The AHCAL engineering prototype:
  - Base board: 36 channels x 4 ASIC (Application specific integrated circuit)



5

Part of the barrel in the ILC HCAL

- The AHCAL engineering prototype:
  - Base board: 36 channels x 4 ASIC (Application specific integrated circuit)
  - The LED system:
    - Direct inject light into scintillator tile
    - Every channel has an LED
    - LED light amplitude can be controlled via voltage setting.







Bottom view (channels are wrapped in reflector foil)

Position

in stack Layer

- The AHCAL engineering prototype:
  - next testbeam at CERN in October till December:
  - 24 layers, ~3450 channels
  - Trigger thresholds are everything!



Part of the barrel structure (Image by Karsten Gadow)



21

- The AHCAL engineering prototype:
  - next testbeam at CERN in October till December:
  - 24 layers, ~3450 channels
  - Trigger thresholds are everything!



#### No trigger threshold

"Good" trigger threshold

- Triggering system (2 modes):
  - Auto trigger (AT) :
    - Triggers when the signal pulse exceeds a threshold value automatically.
    - The threshold values are set in the configuration files of the readout system.
  - Reference system :
    - Triggers everything regardless of the signal pulse strength, we call it the external trigger (ET).
- Set thresholds with acceptable noise rates
- Goal: Verify threshold.



#### No trigger threshold

"Good" trigger threshold

- Current status:
  - Trigger threshold behavior varies for each channel.
  - Previously, these measurement can only be done for 1 channel at 1 time
  - Need a relatively fast method to measure trigger threshold for each channel. (ILC HCAL: millions of channel).

- Current status:
  - Trigger threshold behavior varies for each channel.
  - Previously, these measurement can only be done for 1 channel at 1 time
  - Need a relatively fast method to measure trigger threshold for each channel. (ILC HCAL: millions of channel).

Solution: LED System + Trigger in two modes + Oskar (my acting supervisor)

- Take runs using LED with a wide range of LED amplitude .
- The runs are added together to produce a spectra for each channel.
- Runs are taken with external trigger(ET) and auto trigger(AT) mode.



- Take the division of AT/ET plots for each threshold values to see the trigger efficiency.
- From this ratio plot, extract the trigger position where trigger efficiency 50%.



- Take the division of AT/ET plots for each threshold values to see the trigger efficiency.
- From this ratio plot, extract the trigger position where trigger efficiency 50%.
- For each AT trigger setting, the trigger positions are plotted into a signal vs threshold graph.
- From this graph, we can calculated the values of signal from different threshold values.



# **Results and discussion**

- The prototype used for the CERN testbeam was studied.
- The method works, as boards with 100% channels of good data was achieved.
- The time taken to do this measurement is roughly ~2 hours.

# Summary

- A new method to define the trigger threshold using LED system has been established. (by my acting supervisor, Oskar Hartbrich)
- Safe and fast method, developed by using existing systems which was not originally designed for it.
- This method works well. More improvements can be achieved (eg. faster measurement time)



# Thank you for your attention. Join the ILC group to work in many countries especially Japan!



#### Backup slides

Table 3.1. Summary table of the 250-500 GeV baseline and luminosity and energy upgrade parameters. Also included is a possible 1st stage 250 GeV parameter set (half the original main linac length)

|                                      |                     |                                                   | Baseline 500 GeV Machine |       | 1st Stage | L Upgrade E <sub>CM</sub> Upgrad |       | Jpgrade |        |
|--------------------------------------|---------------------|---------------------------------------------------|--------------------------|-------|-----------|----------------------------------|-------|---------|--------|
|                                      |                     |                                                   |                          |       |           |                                  |       | Α       | В      |
| Centre-of-mass energy                | $E_{CM}$            | GeV                                               | 250                      | 350   | 500       | 250                              | 500   | 1000    | 1000   |
| Collision rate                       | $f_{rep}$           | Hz                                                | 5                        | 5     | 5         | 5                                | 5     | 4       | 4      |
| Electron linac rate                  | $f_{\text{linac}}$  | Hz                                                | 10                       | 5     | 5         | 10                               | 5     | 4       | 4      |
| Number of bunches                    | $n_{\rm b}$         |                                                   | 1312                     | 1312  | 1312      | 1312                             | 2625  | 2450    | 2450   |
| Bunch population                     | N                   | $\times 10^{10}$                                  | 2.0                      | 2.0   | 2.0       | 2.0                              | 2.0   | 1.74    | 1.74   |
| Bunch separation                     | $\Delta t_{\rm b}$  | ns                                                | 554                      | 554   | 554       | 554                              | 366   | 366     | 366    |
| Pulse current                        | $I_{\text{beam}}$   | mA                                                | 5.8                      | 5.8   | 5.8       | 5.8                              | 8.8   | 7.6     | 7.6    |
| Main linac average gradient          | $G_{\mathbf{a}}$    | $MV m^{-1}$                                       | 14.7                     | 21.4  | 31.5      | 31.5                             | 31.5  | 38.2    | 39.2   |
| Average total beam power             | $P_{\text{beam}}$   | MW                                                | 5.9                      | 7.3   | 10.5      | 5.9                              | 21.0  | 27.2    | 27.2   |
| Estimated AC power                   | $P_{\rm AC}$        | MW                                                | 122                      | 121   | 163       | 129                              | 204   | 300     | 300    |
| RMS bunch length                     | $\sigma_{\rm z}$    | mm                                                | 0.3                      | 0.3   | 0.3       | 0.3                              | 0.3   | 0.250   | 0.225  |
| Electron RMS energy spread           | $\Delta p/p$        | %                                                 | 0.190                    | 0.158 | 0.124     | 0.190                            | 0.124 | 0.083   | 0.085  |
| Positron RMS energy spread           | $\Delta p/p$        | %                                                 | 0.152                    | 0.100 | 0.070     | 0.152                            | 0.070 | 0.043   | 0.047  |
| Electron polarisation                | $P_{-}$             | %                                                 | 80                       | 80    | 80        | 80                               | 80    | 80      | 80     |
| Positron polarisation                | $P_{+}$             | %                                                 | 30                       | 30    | 30        | 30                               | 30    | 20      | 20     |
| Horizontal emittance                 | $\gamma \epsilon_x$ | μm                                                | 10                       | 10    | 10        | 10                               | 10    | 10      | 10     |
| Vertical emittance                   | $\gamma \epsilon_y$ | nm                                                | 35                       | 35    | 35        | 35                               | 35    | 30      | 30     |
| IP horizontal beta function          | β.                  | mm                                                | 13.0                     | 16.0  | 11.0      | 13.0                             | 11.0  | 22.6    | 11.0   |
| IP vertical beta function            | $\beta_y^*$         | mm                                                | 0.41                     | 0.34  | 0.48      | 0.41                             | 0.48  | 0.25    | 0.23   |
| IP RMS horizontal beam size          | $\sigma_{*}^{*}$    | nm                                                | 729.0                    | 683.5 | 474       | 729                              | 474   | 481     | 335    |
| IP RMS veritcal beam size            | $\sigma_y^*$        | nm                                                | 7.7                      | 5.9   | 5.9       | 7.7                              | 5.9   | 2.8     | 2.7    |
| Luminosity                           | L                   | $\times 10^{34}$ cm <sup>-2</sup> s <sup>-1</sup> | 0.75                     | 1.0   | 1.8       | 0.75                             | 3.6   | 3.6     | 4.9    |
| Fraction of luminosity in top 1%     | $L_{0.01}/L$        |                                                   | 87.1%                    | 77.4% | 58.3%     | 87.1%                            | 58.3% | 59.2%   | 44.5%  |
| Average energy loss                  | δRS                 |                                                   | 0.97%                    | 1.9%  | 4.5%      | 0.97%                            | 4.5%  | 5.6%    | 10.5%  |
| Number of pairs per bunch crossing   | Nraire              | ×10 <sup>3</sup>                                  | 62.4                     | 93.6  | 139.0     | 62.4                             | 139.0 | 200.5   | 382.6  |
| Total pair energy per bunch crossing | $E_{\text{pairs}}$  | TeV                                               | 46.5                     | 115.0 | 344.1     | 46.5                             | 344.1 | 1338.0  | 3441.0 |

.

| Energy                                                                                                                                     | Reaction                                                                                                                                                                                                                                | Physics Goal                                                                                         |                                                                                                                                            |                                                                                                                                                                   |                                                                                              |                                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|
| 91 GeV                                                                                                                                     | ${\rm e^+e^-} \to Z$                                                                                                                                                                                                                    | ultra-precision electroweak                                                                          |                                                                                                                                            |                                                                                                                                                                   |                                                                                              |                                                          |  |  |
| 160 GeV                                                                                                                                    | ${\rm e^+e^-} \rightarrow WW$                                                                                                                                                                                                           | ultra-precision $W$ mass                                                                             |                                                                                                                                            |                                                                                                                                                                   |                                                                                              |                                                          |  |  |
| 250 GeV                                                                                                                                    | ${\rm e^+e^-} \to Zh$                                                                                                                                                                                                                   | precision Higgs couplings                                                                            |                                                                                                                                            |                                                                                                                                                                   |                                                                                              |                                                          |  |  |
| 350-400 GeV                                                                                                                                | $\begin{array}{l} {\rm e^+e^-} \rightarrow t\bar{t} \\ {\rm e^+e^-} \rightarrow WW \\ {\rm e^+e^-} \rightarrow \nu\bar{\nu}h \end{array}$                                                                                               | top quark mass and couplings<br>precision W couplings<br>precision Higgs couplings                   |                                                                                                                                            |                                                                                                                                                                   |                                                                                              |                                                          |  |  |
| 500 GeV                                                                                                                                    | $e^+e^- \rightarrow f\bar{f}$                                                                                                                                                                                                           | precision search for $Z'$                                                                            |                                                                                                                                            |                                                                                                                                                                   |                                                                                              |                                                          |  |  |
| e+<br>e+                                                                                                                                   | $e^+e^- \rightarrow tth$<br>$e^+e^- \rightarrow Zhh$                                                                                                                                                                                    | Higgs coupling to top<br>Higgs self-coupling                                                         | Торіс                                                                                                                                      | Parameter                                                                                                                                                         | Accuracy $\Delta X/X$                                                                        |                                                          |  |  |
| $ e^+e^- \to \tilde{\chi}\tilde{\chi}  e^+e^- \to AH, H^+H^- $                                                                             |                                                                                                                                                                                                                                         | search for supersymmetry<br>search for extended Higgs states                                         | Higgs                                                                                                                                      | $m_{\rm h}$<br>$\Gamma_{\rm h}$                                                                                                                                   | 0.03%<br>1.6%                                                                                | $\Delta m_{\rm h} = 35$ MeV, 250 GeV 250 GeV and 500 GeV |  |  |
| 700–1000 GeV $e^+e^- \rightarrow \nu\bar{\nu}hh$<br>$e^+e^- \rightarrow \nu\bar{\nu}t\bar{t}$<br>$e^+e^- \rightarrow \tilde{t}\tilde{t}^*$ | $\begin{array}{l} \mathrm{e^+e^-} \rightarrow \nu \bar{\nu} hh \\ \mathrm{e^+e^-} \rightarrow \nu \bar{\nu} VV \\ \mathrm{e^+e^-} \rightarrow \nu \bar{\nu} t \bar{t} \\ \mathrm{e^+e^-} \rightarrow \tilde{t} \tilde{t}^* \end{array}$ | Higgs self-coupling<br>composite Higgs sector<br>composite Higgs and top<br>search for supersymmetry | _                                                                                                                                          | $\begin{array}{c}g(hWW)\\g(hZZ)\\g(hb\bar{b})\\g(hc\bar{c})\\g(hgg)\\g(h\tau^+\tau^-)\\BR(h\to \mathrm{invis.})\\g(ht\bar{t})\\g(hhh)\\g(h\mu^+\mu^-)\end{array}$ | 0.24%<br>0.30%<br>0.94%<br>2.5%<br>2.0%<br>1.9%<br>< 0.30% (95% conf.)<br>3.7%<br>26%<br>16% |                                                          |  |  |
|                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                      |                                                                                                                                            |                                                                                                                                                                   |                                                                                              | 1000 GeV                                                 |  |  |
|                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                      | Тор                                                                                                                                        | $m_{ m t}$                                                                                                                                                        | 0.02%                                                                                        | $\Delta m_{ m t}=$ 34 MeV, threshold scan                |  |  |
|                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                      |                                                                                                                                            | $\tilde{F}_{1}^{\gamma}$ $\tilde{F}_{1}^{\gamma}$ $\tilde{F}_{1}^{\gamma}$ $\tilde{F}_{2}^{\gamma}$ $\tilde{F}_{2V}^{\gamma}$ $\tilde{F}_{2V}^{2}$                | 2.4%<br>0.2%<br>0.3%<br>0.5%<br>0.3%<br>0.6%                                                 |                                                          |  |  |
|                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                      | W                                                                                                                                          | $m_{ m W}$ $g_1$ $\kappa_{\gamma}$ $\kappa_{ m Z}$ $\lambda_{\gamma}$ $\lambda_{ m Z}$                                                                            | 0.004%<br>0.16%<br>0.03%<br>0.03%<br>0.06%<br>0.06%                                          | $\Delta m_{ m W}=$ 3 MeV, threshold scan 500 GeV         |  |  |
|                                                                                                                                            |                                                                                                                                                                                                                                         | $H^0, A^0$<br>$\tilde{\chi}^+$<br>$\tilde{t}$                                                        | $egin{array}{l} m_{ m H},\ m_{ m A}\ 	aneta\ m(\widetilde{\chi}^+)\ m(\widetilde{\chi}^0)\ m(\widetilde{t})\ \cos	heta_{ m t} \end{array}$ | 1.5%<br>20%<br>1%<br>1%<br>1%<br>0.4%                                                                                                                             |                                                                                              |                                                          |  |  |



- The International Linear Collider
  - Center-of-mass energy of 500GeV e<sup>+</sup>e<sup>-</sup> linear collider
  - To be build in Japan
  - Higgs precision measurement, "LHC successor"
- The Internation Large Detector (ILD):
  - Particle detector being develop for the ILC
  - Excellent tracking and high granularity calorimetry systems to reconstruct the energy of individual particles using the Particle Flow approach.
  - Onion-like structure
- Analogue hadron calorimeter (AHCAL)
  - Sampling calorimeter with sandwich structure of absorbing and detecting layers for the ILD.
  - Scintillator tiles and silicon photomultipliers (SiPM)







From ILC Technical Design Report

- The AHCAL engineering prototype:
  - Base board: 36 channels x 4 ASIC (Application specific integrated circuit)
  - The LED system:
    - Direct inject light into scintillator tile
    - Every channel has an LED
    - LED light amplitude can be controlled via voltage setting.
    - LED pulses are synchronize for all channels.





LED system (Taken from Oskar Hartbrich master thesis)

- Take runs using LED with a wide range of LED amplitude.
- Runs are taken with auto trigger and the reference mode.



- Take runs using LED with a wide range of LED amplitude .
- Runs are taken with external trigger and auto trigger mode.
- The runs are added together to produce a spectra for each channel.



- In auto trigger mode, trigger threshold values are set to 300, 350 and 400 DAC counts.
- Need to get the position in ADC count where the trigger threshold starts.



ADC\_HG\_ET\_Chip\_0\_Chn\_1\_Sum

• From the ADC counts for 0.5MIP data, the corresponding trigger threshold in DAC can be calculated.



27

hDAC\_all\_chip\_0