SLAC Testbeam Data Analysis: High Occupancy Tracking & FE-I4 Cluster Study

Martin Klassen Supervisor: Igor Rubinskiy Summer Student Talks Hamburg, 04.09.2014

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Outline

> Motivation

- Why is my Project relevant?
- > Short Introduction to EUTelescope
 - Hardware
 - EUTelescope framework
- > Trust, but verify! Lenin
 - is the dataset consistent / are there real tracks?
- > Results
 - Properties of the Finder-radius
 - What are the resolutions we can resolve 2 different tracks in one cluster?
 - What is their Time over Threshold value (ToT)?

Atlas IBL upgrade – search for b-jets

- > Reconstructing tracks of b-jets at high occupancy with IBL at 14 TeV will guide to new difficulties
- > Increase in hadron boost and decrease in beam-radius leads to particles being closer together on the IBL layer → two tracks hit on same cluster or even pixel
- > Try to separate this two tracks over ToT value

M Battaglia UCSC and CERN

Martin Klassen | SLAC Testbeam Dataanalysis | 04.09.2014 | Page 3

Atlas IBL upgrade – search for b-jets

ATLAS track reconstruction efficiency Distance from closest track

Separation of 2-tracks in long-flying B decays requires detailed studies of IBL clusters for closely spaced (d < 2.5 mm) tracks

EUTelescope Properties

- > 6 high precision Mimosa26 planes
 - Pixel pitch 18,4 µm²
 - 14 µm thickness
 - 1152 x 576 pixels
 - Fast readout \rightarrow 10⁶ particles/cm²/s
- > H5783 PMT with 10 x 20 mm² scintillator
- > ATLAS-FE-I4
 - Pixel size 50 x 250 µm²
 - Pixel array 80 x336
 - 50kHz/pixel firing rate → 400 x 10⁶ particles/cm²/s
 - ToT (Due to IBL occupancy 4 bit resolution → Large range of charges corresponds to one ToT value)

Time over Threshold (ToT)

- > ToT Tool for calibration
- > Signal shaped by charge amplifier
- > Time-over-threshold is proportional to induced charge
- > Relation ToT and charge is not linear

Rieger_PG070714.pdf

ToT Translation				
ToT _{Code}	0-12	13	14	15
ToT [25 ns]	${\sf ToT}_{\rm Code}{+}1$	>13	delayed hit	no hit

Why do we use the Data from SLAC? → not DESY?

Why do we use the Data from SLAC? → not LHC/SPS/PS?

> High luminosity → event multiplicity of 200-800 tracks
> Energies up to 25 Gev in PS
> But: proton machine → produce many secondary particles
> Soon tests at SPS for high occupancy

http://aida.web.cern.ch/aida/index.html The CERN PS East Area

Why do we use the Data from

Good: e⁻ accelerator, energies up to 16 Gev
High luminosity → many particles with basically known properties
Event multiplicity around 90-100

http://4.bp.blogspot.com/-qbtlltGOPMc/T5ZZnwuQmOI/AAAAAAAAAPM/ ty0mSUwgGAA/s1600/SLAC-graffiti.JPG https://sciencesprings.files.wordpress.com/2014/07/slac-campus.jpg https://events.stanford.edu/events/21/2162/280%20at%20night.jpg

How to do the Data Analysis? - Journey from raw Dataset to some final Results

Martin Klassen | SLAC Testbeam Dataanalysis | 04.09.2014 | Page 10

DESY

Clustering

Martin Klassen | SLAC Testbeam Dataanalysis | 04.09.2014 | Page 11

Hitmaker – lets search for correlations!

Alignment – lets look at residuals!

Finder-Radius for fitting tracks

EUTelescope sketch with hits on 6 Planes

Projection to Mimosa plane 0

- Starting point of a potential track hit
- Hits belonging to reconstructed track
- Hits which belong to secondary interaction
- Hits from track not reconstructed

Finder-radius

Tracks reconstructed in comparison to Finderradius

- > At small Finderradius ~5µm small number of Tracks reconstructed → 10.000 expected, get less then 2.000
- > for $640\mu m$ around 3.000
- > Maximum at Finderradius of 70µm:
 - Found hit clusters 7645
 - Tracks 6961
 - fitted tracks 6435
 - Around 90% reconstructed:
 - Miss aligned planes
 - Missing Hits at planes

Minimal distance between 2 tracks

Minimal distance between 2 tracks

Minimal Distance between 2 separated Tracks vs Finder-radius

- FE-I4 resolution limited by 100µm
- Mimosa26 resolution of the order of Finder-radius ~ $70\mu m$
- Resolution increases linear as expected for Finder-radius
- Plane 0 behaves unexpected → fixed plane?

Neighbors of a track

Charge of a cluster – data after clustering

Total Signal per Cluster (in Detector specific Charge Unit) clusterSignal_d20 200 2000 2000 Entries 13700 clusterSignal_d20 Count [#] 13700 Entries 15.6 Mean 16.07 Mean RMS 7.46 8.731 RMS 1800 10³ 1600 1400 1200 10² 1000 Interesting Peak? 800 600 10 400 200 10 20 30 50 60 0 40 0 20 30 50 0 10 40 60 Charge Charge

Total Signal per Cluster (in Detector specific Charge Unit)

Charge of a cluster with neighbors

Time over Treshold for Tracks with Neighbours

Charge of a cluster without neighbors in 50x250 um

Neighbors per cluster size

Number of neighbors per cluster size

Cluster size

ToT of a cluster with neighbors vs neighbors

ToT per Neighbors

Time over Treshold for Tracks with Neighbours vs Neighbours

with neighbors

without neighbors

ToT vs Neighbors vs cluster size at low statistics

Time over Treshold for Tracks with Neighbours per Neighbours per clustersize

no neighbors

- > High occupancy test beam is best done with parallel beams
- > Took test beam data at PS T9 with same setup as SLAC needs to be analyzed
- > Track finding efficiency is ~90%
- > Have to add also Neighboring hits into the data analysis program
- > First results do not indicate distinct raise of ToT with increasing number of neighboring hits - will be continued

Backup : Minimal Distance between 2 seperated Tracks vs Finderradius

DistanceXmin Plane 0 vs Radius

- > Atlas FE-I4 expected limit in X:
 - Resolution around 50 μm
 - With Finderradius 70 μm
- Mimosa plane 1 in Y expected:
 - For 40/80 μm resolution to low

Hitmaker – lets search for correlations!

Hitmaker – lets search for correlations!

EUTelescope Properties

Martin Klassen | SLAC Testbeam Dataanalysis | 04.09.2014 | Page 32