

Shower Influences On $t\bar{t}$ Pairs At LHC A Comparison Of Different Monte Carlo Event Generators

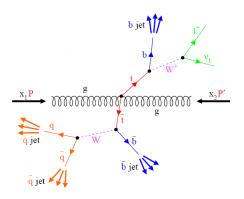
Alexander Floßdorf

Supervisors: Peter Richardson, Mike Seymour, Peter Skands Many Thanks To: Stefano Frixione, Lars Sonnenschein

Debrecen, August 2008

Contents

- 1 Introduction
- 2 p_T of $t\bar{t}$ system


 Phase Space Used By Showers

 Shower Models
- 3 Jets Excluding Tops
- 4 Top Mass

Introduction Of Myself

- PhD student at DESY in Hamburg (Germany)
- Member of the CMS collaboration
- MCnet student at CERN from February to May 2008
- \bullet Topic of my thesis: Influence of NLO and shower algorithms on $t\overline{t}$ at LHC, comparison of different MC generators
 - \Rightarrow studentship was very helpful to learn basics and get in contact with the experts :)

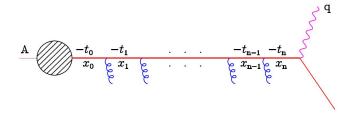
Top Physics

- High energy radiation is possible
- ullet Understanding of radiation will play a crucial role for tar t

Used Generators

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

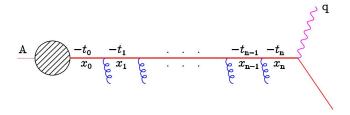
Standalone Event Generators


- Herwig (anglular ordered showers)
- Herwig++ (angular ordered showers)
- Pythia 6 (Q^2 and p_T^2 ordered showers)
- Pythia 8 (p_T^2 ordered showers)

Generators Including Higher Order Contributions

- MC@NLO (NLO computation on ME level)
 - uses Herwig for showering and hadronisation
- Alpgen (accounts for additional hard partons at ME level)
 - ueses Herwig or Pythia 6 for showering and hadronisation

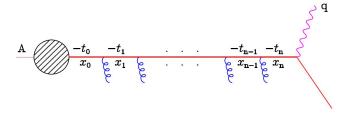
Shower Types


Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

B. Webber, CERN Training Lecture, Februrary 2008

Shower Types

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass


B. Webber, CERN Training Lecture, Februrary 2008

Wimpy Showers

- Maximum virtuality for shower is $t_{max} \sim t_{hard}$
- Cutoff in shower evolution

Shower Types

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

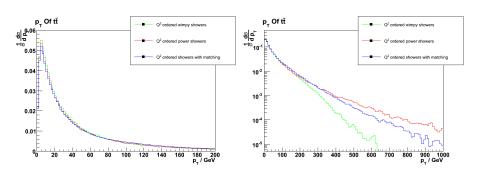
B. Webber, CERN Training Lecture, Februrary 2008

Wimpy Showers

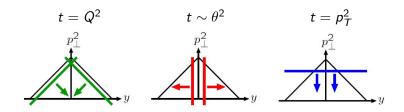
- Maximum virtuality for shower is $t_{max} \sim t_{hard}$
- Cutoff in shower evolution

Power Showers

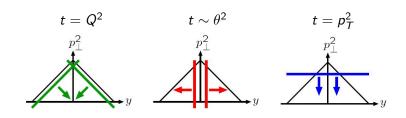
- Maximum virtuality for shower is $t_{max} = s$
- Whole phase space is used


Matching

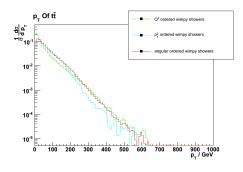
Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass


Matched Showers

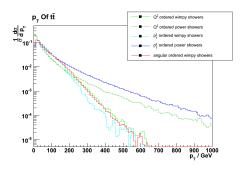
- Hardest radiation is calculated on tree level (NLO diagrams)
- Parton shower accounts for soft radiation
- Matching with parton shower to avoid double counting
- MC@NLO uses subtraction method internally
- Alpgen uses a veto algorithm to discard events wich suffer from double counting


Shower Type Comparison

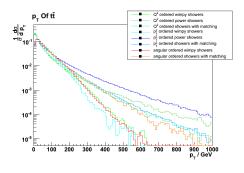
- Peak region of p_T distribution not affected by choice of shower type
- Tail of p_T distribution determined by shower type



T. Sjöstrand, European School of HEP, June 2006



T. Sjöstrand, European School of HEP, June 2006


- evolution from the hard interaction (ME) on
- decreasing in Q^2 : Pythia 6
- decreasing in p_T^2 : Pythia 6 and Pythia 8
- decreasing in angle: Herwig and Herwig++

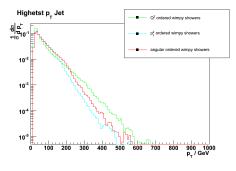
- Angular ordered wimpy showers: Herwig
- Q² ordered wimpy showers:
 Pythia 6
- p_T^2 ordered wimpy showers: Pythia 8

- Angular ordered power showers: not available
- *Q*² ordered power showers: Pythia 6
- p_T^2 ordered power showers: Pythia 8

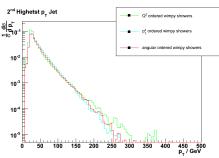
- Angular ordered showers with matching: MC@NLO
- Q² ordered showers with matching: Alpgen + Pythia 6
- p_T² ordered showers with matching: Alpgen + Pythia 6

Jets

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass


Jet Definition

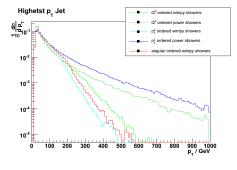
- Leave tops stable and neglect them
- ullet Run jet algorithm on remaning particles within $|\eta| < 6$
- Results for SISCone 0.5 are presented


p[⊤] Of Jets

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

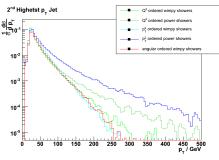
Hardest Jet

Second Hardest Jet



- Slight difference in shower type
- Almost identical for all shower types

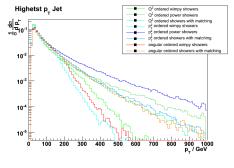
p[⊤] Of Jets


Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

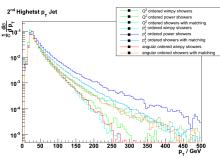
Hardest Jet

• Differences in shower type for power showers

Second Hardest Jet

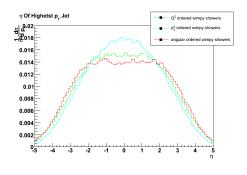


 Differnces in shower type for power showers as well


p[⊤] Of Jets

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

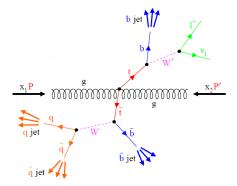
Hardest Jet


Second Hardest Jet

• Matched samples agree

 Matched samples and Q² power showers agree

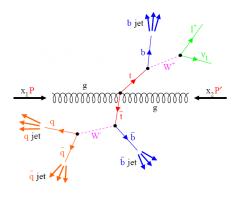
Rapidity Of Jets

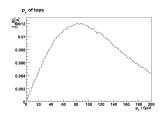


- Shower models show different η distribution for hard radiation
- Angular ordering leads to a flatter shape
- Wimpy / power showers give similar results

Top Reconstruction

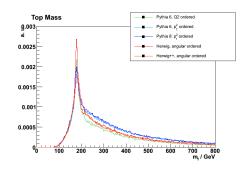
Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass


Semileptonic Decay


Top Reconstruction

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

Semileptonic Decay


- Tops often produced with high p_T
- Request for at least four jets with p_T > 40(GeV)
- Find 3-jet combination with maximum p_T

Top Mass

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

Top Mass

- Differences in peak height and background
- Showers and underlying event influence combinatorial background
- Reconstruction methods can be sensible to generator effects

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

p⊤ Spectra

Different shower implementations lead to differences in p_T distributions of tt system and jets

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

p⊤ Spectra

- Different shower implementations lead to differences in p_T distributions of tt system and jets
- Are these still visible after full detector simulation and reconstruction?

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

p⊤ Spectra

- Different shower implementations lead to differences in p_T distributions of $t\bar{t}$ system and jets
- Are these still visible after full detector simulation and reconstruction?

Top Mass

Combinatorial background for top mass distribution depends on generator

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

p_T Spectra

- Different shower implementations lead to differences in p_T distributions of tt system and jets
- Are these still visible after full detector simulation and reconstruction?

Top Mass

- Combinatorial background for top mass distribution depends on generator
- Does that influence the overall efficiency when physical background is taken into account?
- Are more sophisticated methods affected by this as well?

Acknowledgements

Introduction p_T of $t\bar{t}$ system Jets Excluding Tops Top Mass

This research project has been supported by a Marie Curie Early Stage Research Training of the European Community's Sixth Framework Programme under contract number MRTN-CT-2006-035606.