Event Selection Of Semileptonic $t\bar{t}$ Events

$$t\overline{t}
ightarrow \mu + jets$$

Ch. Rosemann

10. September 2008 - Hamburg CMS Meeting

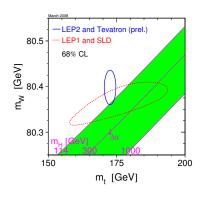
Overview

Introduction

Top Physics Reminder

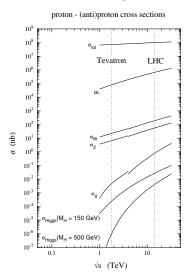
Preselection

Selection


Variable Overview
Cut based Selection
Multivariate Selection

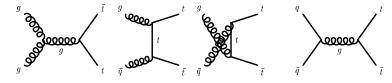
Summary

Motivation - Role inside SM and beyond


- connection to Higgs mechanism
 - Yukawa-coupling
 - indirect mass constraint
- (mass) limit of current knowledge
- powerful test of
 - detector
 - reconstruction
- proof of understanding
- important cornerstone

most important Standard Model parameters:

- mass
- ► (differential) cross sections


Selection Efficiency is fundamental to credibility

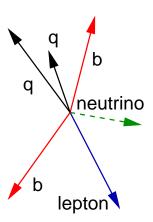
- huge hadronic backgrounds
- leptons are the key
- proper identification needed
- especially electrons
- muons are relatively easy

Production and decay

QCD production in leading order:

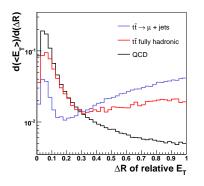
weak decay: $t \rightarrow Wb \approx 100\%$

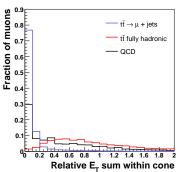
```
Fully hadronic decays t\bar{t}\to bbqqqq 46.2%


Semileptonic decays t\bar{t}\to bbqq\ell\nu 43.5% (29%)

Dileptonic decays t\bar{t}\to bb\ell\nu\ell\nu 10.3% (5.1%)
```

- **NOTE**: omission of τ final states
- ▶ today only $t\bar{t} \rightarrow bbqq\mu\nu (14.5\%)$

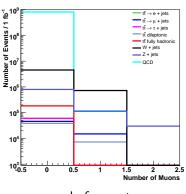

General Preselection


- reduce data volume
- ensure that event is reconstructable
- straightforward cut approach
- ▶ single lepton cut
- ▶ jet multiplicity cut
- simple variables

Muon Isolation

- very important for background suppression!
- define isolation scheme and cut values

Lepton Preselection


• cut on exactly one isolated muon with $p_T \ge 30 \, \text{GeV}$, $|\eta| \le 2.4$

Number of Events / 1 fb⁻¹ 0 0 0 0 0

10⁵

10⁴

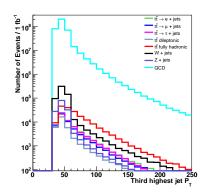
10³

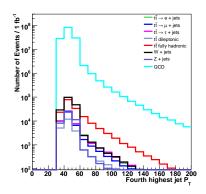
0.5 1 1.5 2 2.5 Number of Muons before cut N-1

 $t\bar{t} \rightarrow e + jets$ $t\bar{t} \rightarrow \mu + jets$

tř dilentonic

W + jets
Z + jets

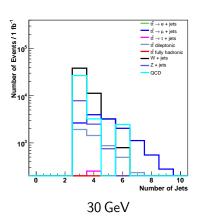

QCD

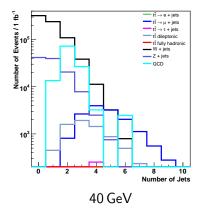

 $t\bar{t} \rightarrow \tau + jets$

tt fully hadronic

Jet Preselection

- jets will prove to be very difficult to master
- ightharpoonup most sensitive is cut on third/fourth highest jet E_T





Jet Preselection 2

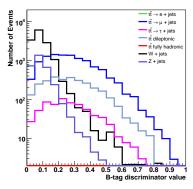
 \triangleright cut on fourth highest jet E_T after muon preselection cut

Preselection Results

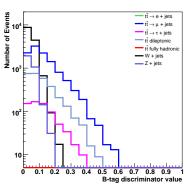
	Before	After	Efficiency
$t\bar{t} ightarrow e + jets$	60828	1	$1.6\cdot 10^{-5}$
$t ar t o \mu + jets$	60926	11122	0.183
$t\bar{t} o au + jets$	60692	685	0.011
$t\bar{t} \to \text{dileptonic}$	46035	3224	0.070
$t\bar{t} \to \text{hadronic}$	183384	9	$4.9 \cdot 10^{-5}$
W + jets	5266k	13991	$2.7\cdot10^{-3}$
Z + jets	938k	3160	$3.4 \cdot 10^{-5}$
QCD	811326k	3286	$4.1\cdot10^{-6}$

$$S/B = \frac{11122}{(3919) + (17151) + (3286)} = \frac{1}{2.2}$$

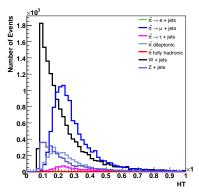
Event Selection


- now complex computations possible
- include partial or total event reconstruction
- use unique features of $t\bar{t}$ events
- different observables:
 - 1. identify particles
 - 2. shape variables
 - 3. kinematic content of event
- from now on omitted: QCD

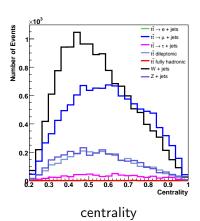
BTagging


- almost unique signature:
 - one isolated lepton
 - at least four jets
 - two b-jets
- use impact parameter significance:
 - determine 2D/3D track impact parameter
 - use measurement accuracy as weight
 - multivariate method to calculate the probability for compatibility with primary vertex
 - use of this probability as discriminant
- one false btag possible
- two high discriminant values unlikely

B Discriminator Distributions



highest btag value



second highest btag value

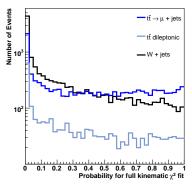
Event Shapes: Ht and Centrality

scalar sum of 4 highest E_T jets

4 B S 4 B S 4 B S 4 B S 5 B 5 B 5 B 6 B

Kinematic Fit

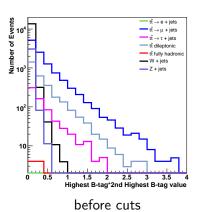
- use event template for χ^2 fit on particles
- \triangleright χ^2 value after fit can be interpreted as goodness of fit
- ▶ in principle: indicator of semileptonic $t\bar{t}$ decay
- technical:
 - use four (five) highest E_T jets
 - use lepton and neutrino
 - imply mass constraints
 - two W masses (leptonic and hadronic side)
 - two top masses (leptonic and hadronic side)
 - leave neutrino η (or p_z free)
- use best χ^2 values from combinatorics
- different fits possible

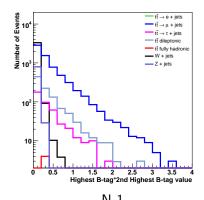


Kinematic Fit Results

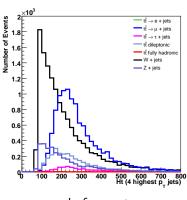
use Fit probability of events with converged fits

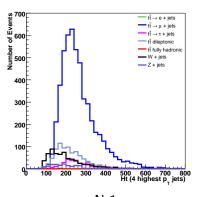
hadronic leg




whole event at once

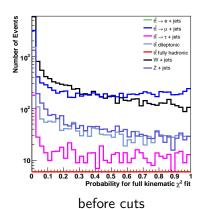
Cut Selection: BTagging


 cut on product of highest and second highest discriminator value



Cut Selection: Event Shapes

only Ht is suited for a cut selection


before cuts

N-1

Cut Selection: Event Fit Probability

only probability for whole event fit is shown

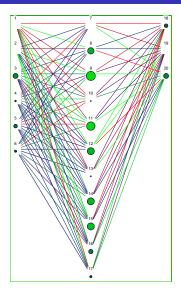
Ti → e + jets — it → + jets — it it → + jets — it idiliptonic — it hully hadronic — W + jets — Z + jets — Z + jets — It idiliptonic — W + jets — Z + jets — It idiliptonic — W + jets — Z + jets — Z + jets — Z + jets — It idiliptonic — W + jets — Z + jets — It idiliptonic — W + jets — Z + jets — It idiliptonic — W + jets — Z + jets — It idiliptonic — It idi

N-1

Results of cut based approach

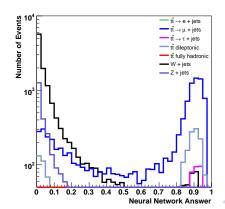
	Before	After	Efficiency
$t\overline{t} ightarrow e + jets$	60828	0	0
$t \overline{t} ightarrow \mu + jets$	60926	4981	0.082
$t\bar{t} ightarrow au + jets$	60692	322	0.005
$t\bar{t} \to \text{dileptonic}$	46035	745	0.016
$t\bar{t} \to \text{hadronic}$	183384	4	$2.2 \cdot 10^{-5}$
W + jets	5266k	435	$8.2 \cdot 10^{-5}$
Z + jets	938k	120	$1.3 \cdot 10^{-4}$

$$S/B = \frac{4981}{(1072) + (555)} = \frac{3.1}{1}$$


Neural Network

- simple cut values can be combined more effectively
- multivariate technique: Neural Network
- high generalisation power
- correlations are taken into account
- technique:
 - create subsets of data (training and validation)
 - train network with certain layout
 - test against validation sample (and additional tests)
 - encode trained network into function
 - evaluate final variable and cut value
- use same variables as before (plus Centrality)

Simple Network layout


- ▶ simple network
- ▶ six input nodes
- eleven hidden nodes
- three output nodes
- ▶ use 1/5 of data

Final Selection Variable

 \triangleright combine output node values n_i into final variable

$$\kappa = \frac{n_1}{n_2 + n_3} / \left(\frac{n_2}{n_1 + n_3} + \frac{n_3}{n_1 + n_2} \right) \qquad \in [0, 1]$$

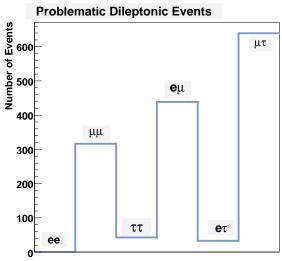
Result of multivariate approach

	Before	After	Efficiency
$t \overline{t} ightarrow e + jets$	60828	1	$1.6 \cdot 10^{-5}$
$t ar t o \mu + jets$	60926	7711	0.127
$t\bar{t} o au + jets$	60692	482	$7.9 \cdot 10^{-4}$
$t\bar{t} \to \text{dileptonic}$	46035	1469	0.03
$t\bar{t} \to \text{hadronic}$	183384	4	$2.2 \cdot 10^{-5}$
W + jets	5266k	1022	$1.9 \cdot 10^{-4}$
Z + jets	938k	269	$2.9 \cdot 10^{-4}$

$$S/B = \frac{7711}{(1956) + (1026)} = \frac{2.6}{1}$$

Summary and Outlook

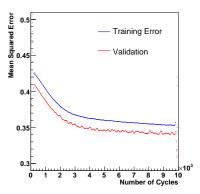
Summary


- successful selection possible
- ightharpoonup credibility of cross section is ensured with efficiencies $\simeq 10\%$
- straightforward cut based approach possible
- Neural Network approach very promising
- ▶ largest background is (dileptonic) $t\bar{t}$

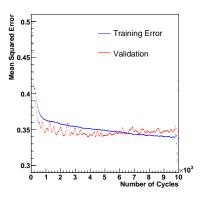
Outlook

- check systematic influences on differential cross sections
- think about methods for QCD extrapolation

Backup 1

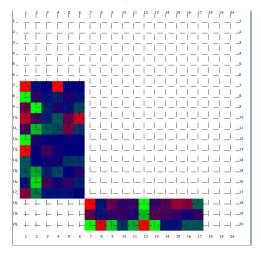


Event ID



Backup 2 – NN Training

Overtraining avoided


simple network no danger of overtraining

complex network overtraining possible

Backup 3 – NN weights/correlations

