

Marek Kowalski DESY&HU

DESY-Seminar 21.10.2014

The Zwicky Transient Facility – wide field imaging at DESY

>Introduction

Cosmology with nearby Supernovae Ia

>Hunting the sources of cosmic neutrinos

>The next step: Zwicky Transient Facility

Fritz Zwicky (1898-1974)

Marek Kowalski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Page 3 (DES

Mount Palomar Observatory

120 cm Schmidt telescope - - Discovered > 3000 SNe for Palomar Transient Factory and SNfactory

Mount Palomar Observatory

Detecting & Observing Supernovae

Detecting & Observing Supernovae

Core collapse SNe

~3000 SNe in total so far from Palomar Transient Factory and the Supernova Factory

i | Astrophysical neutrinos at the Humboldt-University | July 2014 | Page 7

Cosmology

Cosmology Group @ Humboldt-University

Marek Kowalski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Page 9

A modern SNe la Hubble Diagram

Marek Kowalski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Page 10

Supernova Factory

LBNL, LPNHE-Paris, IPNL-Lyon, CRAL-Lyon, Humboldt-U. Yale U, Tsinguha U., (Bejing), MPA (Garchingen)

Marek Kowalski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Page 11

11

Supernova Factory

- Untargeted wide-field search (3000 sqdeg) using the Palomar 48-in telescope & QUEST II camera
- Follow-up with custom-build SNIFS spectrograph on the University Hawaii 2.2m telescope

Friedmann eq. governing expansion rate of Universe

$$H^{2} = \left(\frac{\dot{a}}{a}\right) = \frac{8\pi G}{3} \left(\rho_{m} + \rho_{r} + \rho_{\Lambda} + \rho_{k}\right)$$

Hubble constant central parameter in cosmology, e.g.

⇒Dark energy equation of state
⇒Number of neutrino flavors

The Hubble Constant

2-2.4 σ tension in the Hubble constant between CMB and SNe

- Systematic uncertainties underestimated?
- Mismatch between CMB and local H_o measurement due local matter under/ over densities?

CMB temperature map: $\Delta T \sim 10^{-3} \text{ K}$

CMB Dipole due relative volicity of Local Group of 627±22 km/s (Kogut et al. 1993)

What is draging us trough space?

Resolving the Bulk flows: Galaxies vs SNe

Supernovae:

small (but growing) statistics easy to observe at larger z Marek Kowalski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Page 16

Supernovae as velocity tracers

Feindt et al., SNfactory, A&A, 201 3walski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Page 17

Marek Kowalski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Pade R

Feindt et al. (Snfactory) A&A 2013

Modeling the attractor $M_{\text{attractor}} = \frac{4\pi R^3}{3} \rho_c \Omega_M (1+\delta)$ $\vec{v}_p(\delta) = \frac{afH}{4\pi} \int \frac{\vec{y} - \vec{x}}{|\vec{y} - \vec{x}|^3} \delta(\vec{y}) \mathrm{d}^3 \vec{y}$

At distance of the SSC required mass is two to three times higher

SSC disfavored at 2σ compared to constant bulk flow independent of mass

Marek Kowalski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Pade GR

Modeling the attractor $M_{\text{attractor}} = \frac{4\pi R^3}{3} \rho_c \Omega_M (1+\delta)$ $\vec{v}_p(\delta) = \frac{afH}{4\pi} \int \frac{\vec{y} - \vec{x}}{|\vec{y} - \vec{x}|^3} \delta(\vec{y}) d^3 \vec{y}$

Sloan Great Wall + SSC provides sufficient mass!

Impact on Hubble constant due additional masses < 1%

Feindt et al. (SNfactory) A&A 2013

Marek Kowalski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Page 21

Hubble constant - a bias in the measurement

SN Ia brightness depends on the star formation activity in its local environment (Rigault, ApJ 2013)

Hubble constant - a bias in the measurement

Multi-Messenger

Neutrino Astronomy with IceCube

The IceCube Neutrino Observatory

Marek Kowalski

The IceCube Neutrino Observatory

Current constraints on the diffuse flux

Current constraints on the diffuse flux

Extragalatic origin!

Possible sources of the diffuse flux

Marek Kowalski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Page 30

IceCube neutrino follow-up

PTF12csy

Marek Kowalski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Page 33

DESY WD BERLIN

Marek Kowalski | Astrophysical neutrinos at the Humboldt-University | July 2014 | Page 34

its a Type IIn SN...but it was already old

An a-posteriori p-value calculation for PTF12csy

- P_{alert}: Probability for an alert with logLlh ≤ –18.1
- P_{SN}: Prob. to find any CCSN by chance, within error radius of the alert, within 300 Mpc
- P_{comb}: Using Fisher's method: Prob. for getting the alert and finding the SN in this alert

	P _{alert}	P_{SN}	P _{comb}
single year	13.9%	1.6%	1.6% = 2.4 <i>σ</i>
3 years	~46%	1.6%	\sim 4.3% = 2 σ

Zwicky Transient Facility

ZTF versus PTF

	PTF	ZTF			
Active Area	7.26 deg ²	47 deg ²			
Overhead Time	46 sec	<15 sec			
Optimal Exposure Time	60 sec	30 sec			
Relative Areal Survey Rate	1x	14.7x			
Relative Volumetric Survey Rate	1x	12.3x			

3750 deg²/hour ⇒ 3π survey in 8 hours >250 observations/field/year for uniform survey

Existing PTF camera MOSAIC 12k New ZTF camera: 16 6k x 6k e2v CCDs Niversity | July 2014 | Page 41

ZTF versus other surveys

				3750 deg²/hour
			=	⇒ 3π survey in 8 hours
Survey Camera	D (m)	Ω _{FoV} (deg²)	Etendue (m²deg²)	>250 observations/field/year for uniform survey
PTF	1.2	7.3	8.2	
DECam	4.0	7.0	37.7	
PS1	1.8	3.0	17.8	
ZTF	1.2	47	53.1	
	E N	Existing PT MOSAIC 12	F camera 2k	New ZTF camera: 16 6k x 6k e2v CCDs hiversity July 2014 Page 42

ZTF versus other surveys

ZTF will world-leading speed in finding spectroscopically-accessible transients.

Summary and Outlook

- Wide-field imagining provides access to transient Universe
- >Measure expansion rate & local matter distribution
- >Improve hunt for sources of cosmic neutrinos
- ZTF will improve statistics by a factor 10 over currently available data

ZTF is coming in 2017!