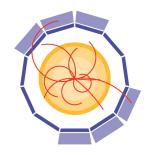
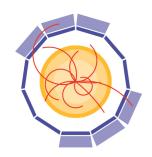
Advanced European Infrastructures for Detectors at Accelerators


Felix Sefkow

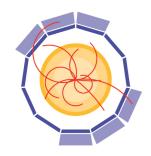


Detector Workshop of the Helmholtz Alliance Berlin, March 5, 2015

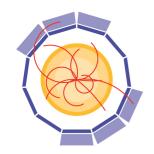
Outline:

- History
- Proposal
 - Context, objectives, consortium
- Implementation
 - Work plan, management, resources

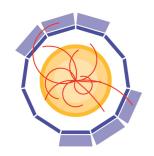
Previous infrastructure initiatives


- FP6: EUDET: 2006-2010
 - Total budget 21M, EU contribution 7M
 - 31 partners + associates
 - detector development for a linear collider
 - pixel telescope, TPC magnet and field cage, calorimeter absorber and electronics, software, transnational access to test beams
- FP7: AIDA: 2011-2014
 - Total budget 26M, EU contribution 8M
 - 80+ institutes, 40 (direct) beneficiaries
 - detector development for LHC upgrades, ILC, CLIC, neutrino physics and Super-B
 - TA to test beam and irradiation facilities, DD4HEP, more telescopes, 3D integration, etc pp

AIDA-2020


AIDA

Towards AIDA-2020


- FP8 Horizon2020: targeted call, published 11/12/2013
 - following a successful evaluation of pre-proposal
- Deadline 2.9.2014
 - budget 140M, success rate 50%
 - competing with nuclear and astro-physics
- End of 2013: Call for expressions of interest
 - >50 EoIs received, strong interest from LHC
- Open meeting 17.2.14 @ CERN
 - coordination office, WP contact persons
- March 2014: AIDA annual meeting
 - follow-up end April: work package structure, content
- Summer: proposal writing, budget
 - EC request 10M, overall budget 28.9M
- 2.9.2014: submission
 - coordinator CERN, L.Serin, LAL
- Decision delayed due to budget uncertainties

Proposal coordination

- Coordination office:
 - Laurent Serin, LAL-CNRS/IN2P3 Orsay, AIDA scientific coordinator (chair)
 - FS replacing Ties Behnke (DESY), AIDA deputy coordinator
 - Paul Soler (University of Glasgow), AIDA deputy coordinator
 - Ivan Vila, CSIC Santander, AIDA Governing board chairman
 - Svet Stavrev (DG-EU, CERN), AIDA administrative coordinator
 - Chiara Meroni, ATLAS, for LHC community
 - P.Giacomelli, CMS, for LHC community
 - Juan Fuster Verdú, IFIC Valencia, for ILC community
 - Konrad Elsener, CERN, representing CERN and CLIC community
 - Etam Noah Messomo, UNIGE, for Neutrino community
- Work package contact persons

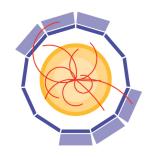
Success!

- 16.1.2015: AIDA-2020 selected by the EC, funding 10M
 - fast grant agreement procedure, no negotiation phase
 - no budget reduction and redistribution
- Now: grant agreement with EC being prepared
- Consortium agreement
 matching contributions
- Expected starting date: 1.5.2015
- Kick-off meeting 3.-5.6.2015
 @ CERN
- First instalment in summer

ACCELERATORS | PHOTON SCIENCE | PARTICLE PHYSICS Deutsches Elektronen-Synchrotron Ein Forschungszentrum der Helmholtz-Gemeinschaft

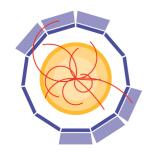
ÜBER UNS | EVENTS & NEWS | FORSCHUNG | INFRASTRUKTUR | BILDUNG & KA

ARTICLE PHYSICS

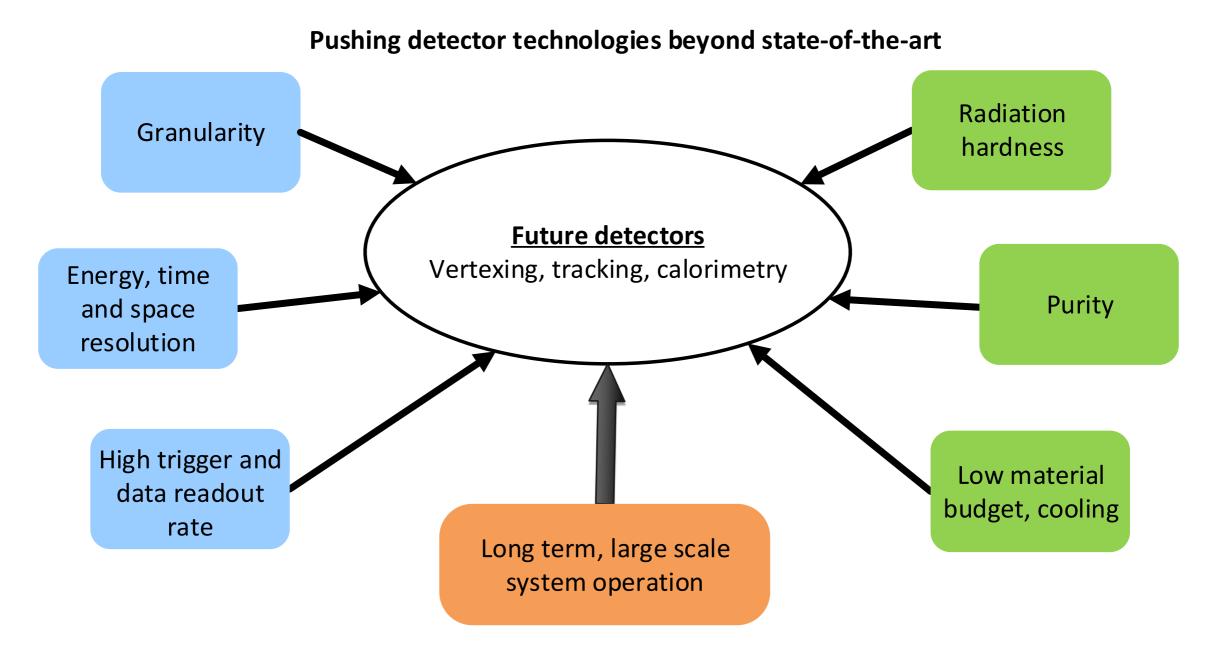

Home / Events & News / News / AIDA-2020 – 10 Millionen EU-Förderung für Erforschung neuer

AIDA-2020 – 10 Millionen EU-Förderung für Erforschung neuer Detektoren ⊷

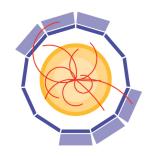
AIDA-2020 – 10 Millionen EU-Förderung für Erforschung neuer Detektoren



Proposal

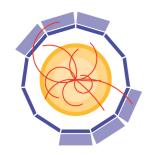


Context


Design, R&D, prototyping construction LHC physics High Luminosity LHC design, R&D, prototyping Follow closely the construction CERN-hosted projects HL-LHC physics European strategy for particle physics design, R&D, prototyping construction CLIC physics Many R&D issues in lesign, R&D, prototyping common construction FCC physics • Build on AIDA design, R&D, prototyping ilC construction uropean contri ILC achievements physics - test beam, irradiation design, R&D, prototyping onstruction - software Neutrino physics - micro-electronics 1990 2000 2010 2020 2030 2040

Objectives

and offer highly equipped infrastructures for tests

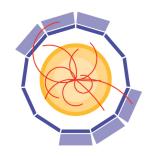


Beyond AIDA

- More transnational access
 - 3x users, 4 new facilities
- Latest technologies for micro-electronics and software
 - parallelisation and vectorisation
- Novel technologies, not covered by AIDA
 - HV CMOS, 3D, micro-channel cooling
- Enhance infrastructures to advance to construction phase
 - calorimetry and gaseous detectors
- Cooperation with industry and technology transfer
 - proof-of-concept fund

• Ambition:

- Serve as a European forum for detector development
- Maintain European leadership in particle physics

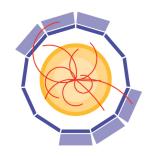


HL-LHC

- 13 TeV this year
- HL-LHC: 5x higher luminosity
 - pile-up, irradiation and trigger challenges

• R&D for detector upgrades:

- Silicon trackers
 - hybrid pixels, interconnects, LGAD, HV-CMOS, ...
- Forward calorimeters
 - high granularity
- MPGD, RPC
 - muon detection with fast timing, industrialisation
- Advanced software
 - 100x more data: parallelisation and vectorisation

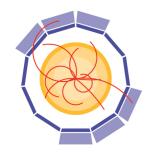


Linear Collider

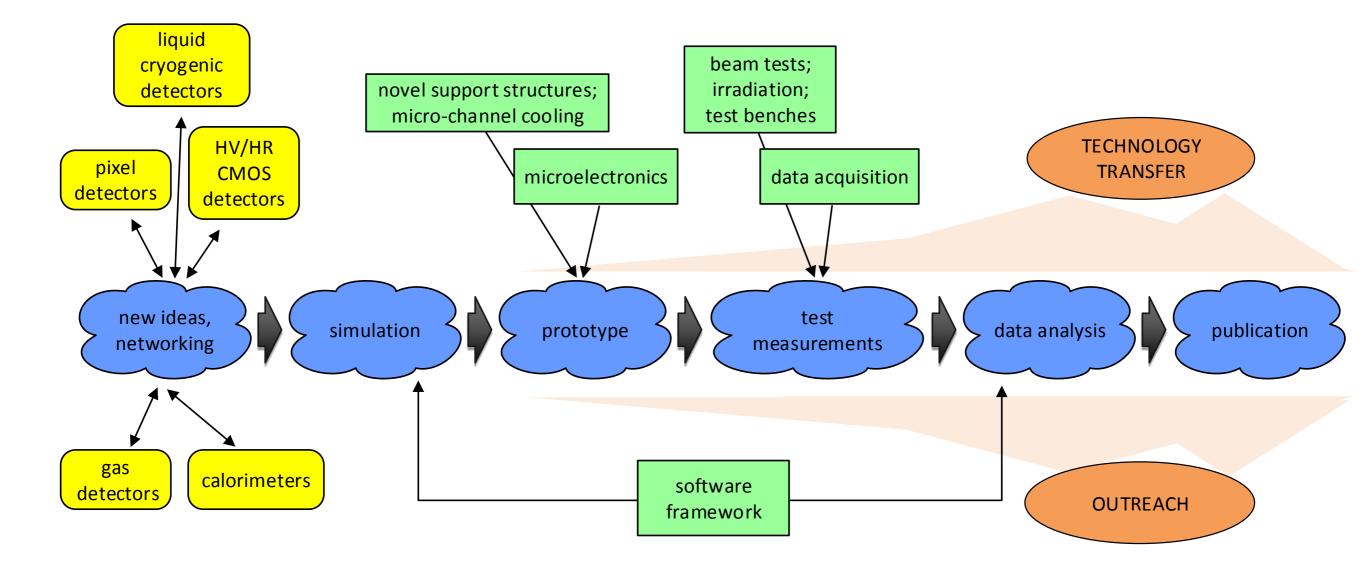
- Main challenge: precision
 - tracking: very limited material budgets, 1/10 LHC
 - calorimetry:very high granularity: 100x LHC
- CLIC: fast read-out, time stamping

R&D towards realistic detector designs:

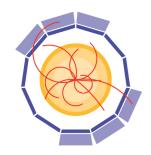
- Hybrid pixels for CLIC
 - planar and 3D, ultra-thin: 1% for 5 layers
- MPGD for TPC and DHCAL
- Test facilities for calorimeter elements
 - Silicon and optical readout
- DAQ for combined test beams
 - alignment and inter calibration
- Test beam upgrades
 - Si tracker as reference for TPC, slow control
- Software



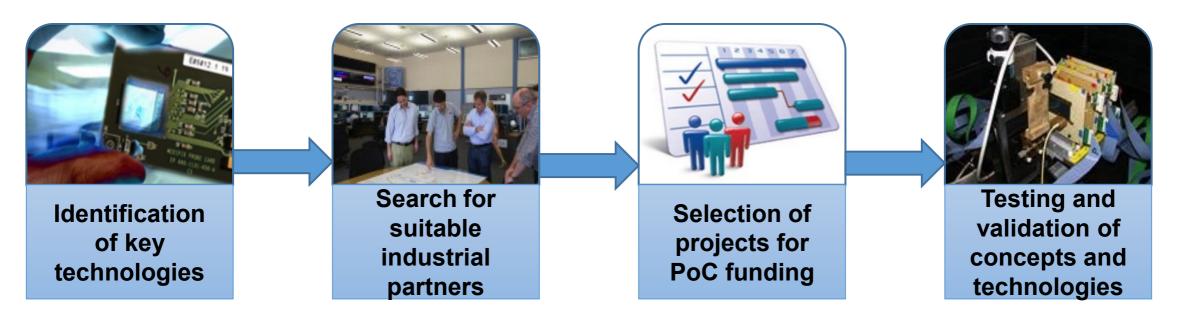
Neutrino facilities


- Towards direct discovery of CP violation
- Accelerator-based experiments
 - large mass detectors

European network for detector R&D:


- around CERN-based LAr infrastructure
- Large scale LAr systems
- Purification and monitoring
- HV and SC magnetisation schemes

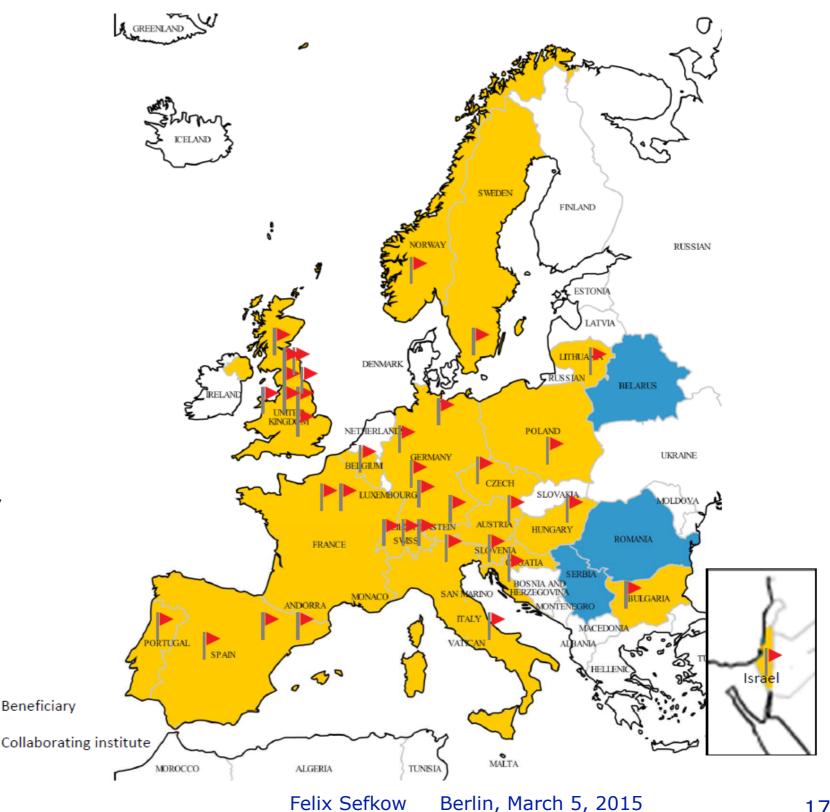
Detector life cycle

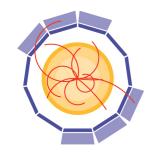


• Guides the work-package structure of AIDA

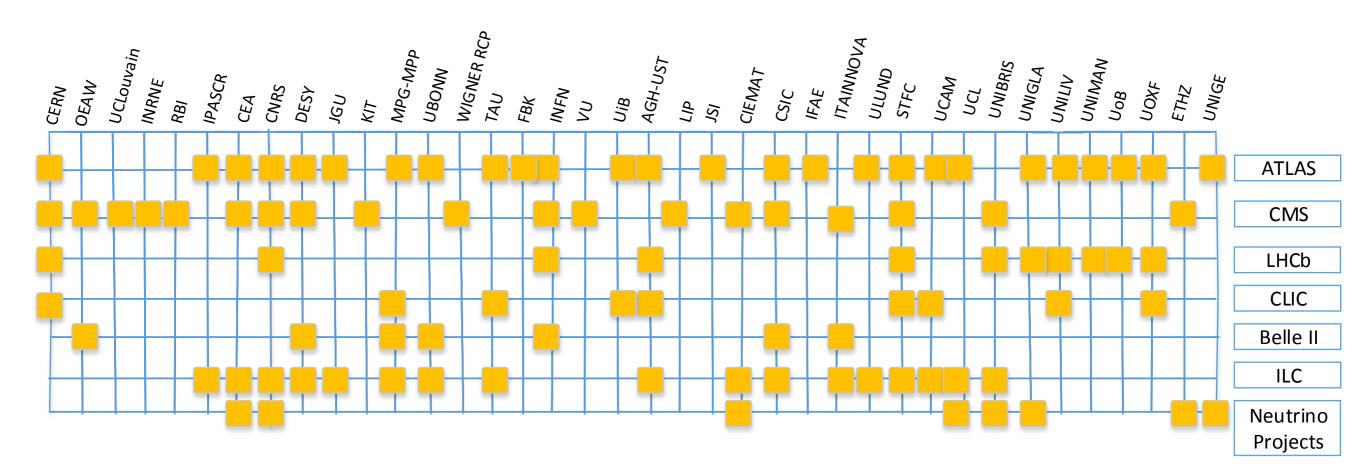
Innovation and outreach

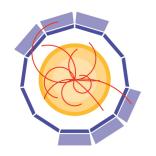
- Emphasised by EU
- Increased effort on communication
 - CERN and DESY
- Continue "Academia meets Industry" events
- Explore feasibility of large area Silicon production
 - trackers and calorimeters
- Proof-of-Concept Fund
 - test and validate technologies with high potential for non-HEP exploitation




Consortium

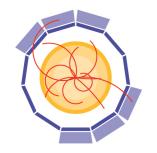
Participants


- 19 countries
- 38 beneficiaries
 - D: DESY, KIT, MPG-MPP, UBONN, JGU
- 17 collaborating institutes
 - D: Freiburg, Heidelberg, Rossendorf, Wuppertal

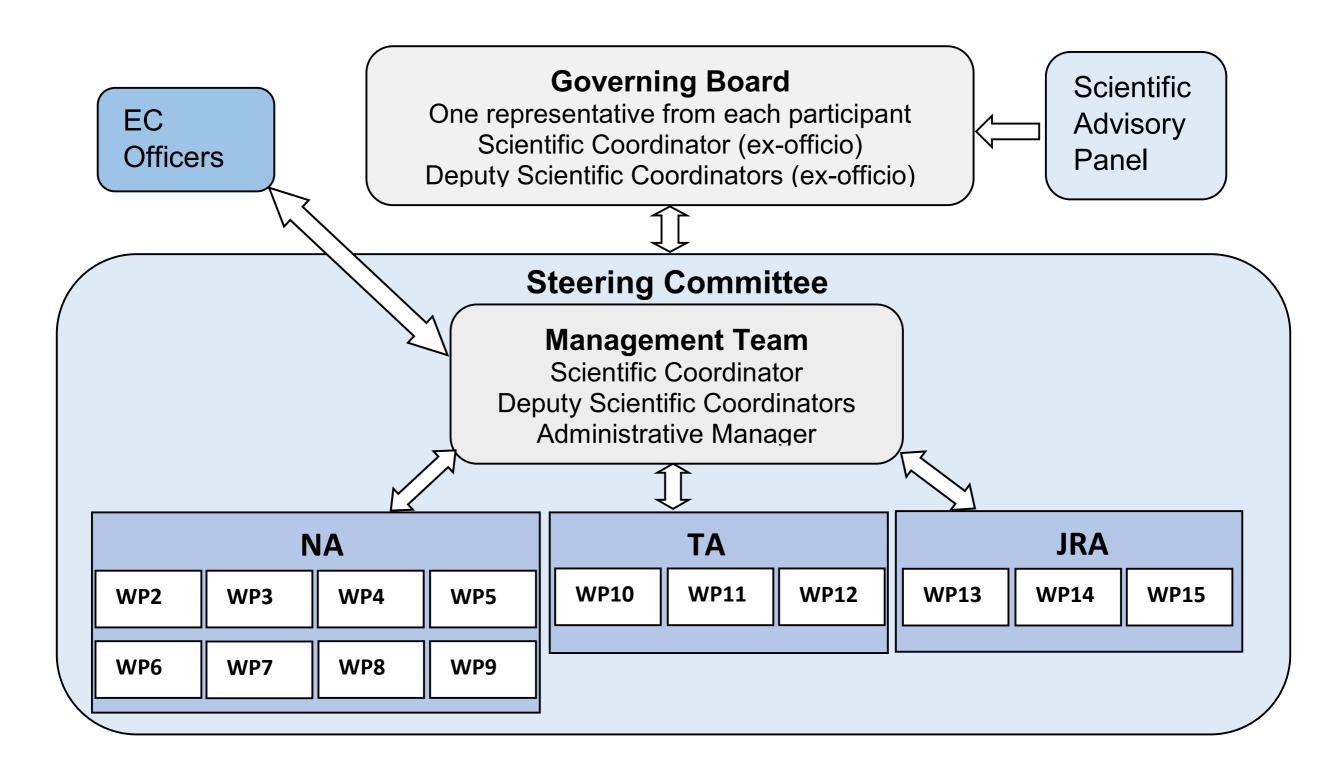

17

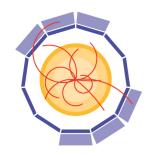
Involvement

• Balance

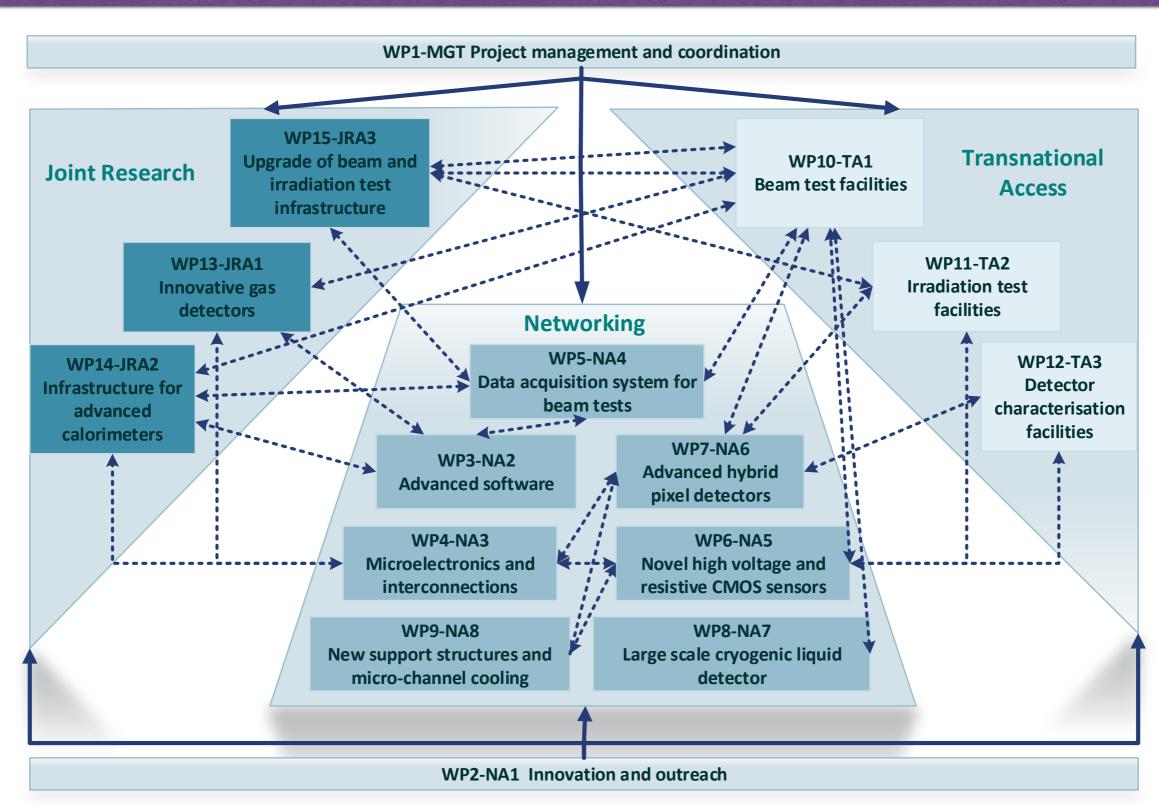


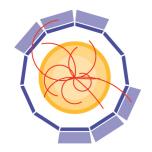
Competences


OEAW UCLOUVAIN INRNE RBI RBI RBI CCRA CCRS CCRS CCRS DESY JGU KIT MPG-MPP UBONN WIGNER RCP TAU FBK INFN	VU UIB AGH-UST AGH-UST LIP LIP LIP CIEMAT CSIC FAE CSIC FAE UNIBRIS UNIBRIS UNIBRIS UNIBRIS UNIBRIS UNIBRIS UNIMAN UOB	• Comple	mentai
	┽ ╷╷╷╝╷╝╷╹ ╧┽ ╝╷╵╹	Management and coordination	All WP
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	Technology transfer	WP2
┽┼┼┼┼┼╧		Communication and outreach	WP2
<u><u><u> </u></u></u>	┼┼┼┼┼┼┼┼┼╧╧┼┼┼┼	Detector industrialisation (silicon, gas detectors)	WP2,13
┼┼┼┼┼╪╧	┼┼┼┼┼┼┼┼┼╧┼┼┼╧	Data description, event data model software	WP3,5
┼┼┼┼┼┼ <mark>╞</mark> ┼┼┼┼┼┼┼		Simulation software	WP3
┼┼┼┼┼┼╪╇	┼┼┼┼┼┼┼┼┾ <mark>╞</mark> ┼┼┼┼ <mark>╞</mark> ┼┼┼┤	Reconstruction software	WP3
┼┼┼┼╪┼╪┼┼┼┼╧┼┼┼╧	┼┼╧┼┼┼┼┼┼┼┼┼┼┼┼┼┼	ASICs for tracker	WP4,6,7
┼┼┼┼┼┼ <mark>┊┊</mark> ┼┼┼┼┼┼┼┼	┼┼ <mark>╧</mark> ┼┼┼┼┼┼┼┼┼┼┼┼┼┼	ASICs for gas detector and calorimeters	WP4,13,14
++++++	┼┼┰┼┼┼┼┼┼┼╪╧╧┼┼┼┼┼┼	Data acquisition	WP5,14
╎╎╎╎<u>╞</u>╎╿<u>╞</u>╎╎╎╎╎╎╎	┼┼┼┼┼┼┼┼┼┿╪╧┼┼┼┼┼┤	Slow control, monitoring	WP5
┼┼┼┼┼╬┼┼┼╬╪┼┼╪╪	┼┼┼┼┼┼ <mark>╞</mark> ╎┼┼┼┼ <mark>╞╞</mark> ┼┼┼┤	Interconnection and hybridisation	WP4,6,7
┼┼┼┼╡ <mark>╧</mark> ┼┼╧╧┊┼┼╧╧	┼┼┼┼┼╪╪╪┼┼╪	Sensor (CMOS, 3D, planar, LGAD) development	WP6,7
┼┼┼┼┼╪╪┼┼╪╪	┼┼┼┼┼╪┼┼┼╪┼┼┼┼┼┼┼	Sensor simulation	WP6,7
	┼┼┼┼┼┼┼┼┼╪┼┼┼┼┼╡	Purification and monitoring of noble liquids	WP8
┼┼┼┼┼ <mark>╞</mark> ┼┼┼┼┼┼┼┼┼	┼┼┼┼╪┼┼┼┼┼┼┼┼┼┼	Charge and light signals in noble liquids	WP4,8
┼┼┼┼┼╧┼┼┼┼┼┼┼┼	┼┼┼┼┼┼┼┼┼┼╧┼┼┼┤╧	Very high voltage and magnetisation	WP8
┼┼┼┼┼┋┼┼┼┼┼┼╞	┼┼┼┼┼╪┼┼┼┼┼┼┼┼┼┼	Micro-channel cooling	WP6,7,9
	┼┼┼┼┼┋┼┼┼╞┼┼┼┼┼┼╧┤	Low mass mechanical structures and design	WP6,7,9
┼┼┼┼┼┼╪┼┼┼┼┼┼╪		Operation of test beam facilities	WP10
┼┼┼┼┼┼╧┼┼┼┼┼┼╧		Upgrade of test beam facilities	WP15
┼╪┽┼┼┼┼┼╧┟┼┼┼┼┼	┼┼┽┼ <u></u> ╪┼┼┟┟┟┟┟┟┟┟┟╞ <mark>╞</mark> ┼┤	Operation of irradiation facilities	WP11
┼┼╪┼┼┼┼┼┼┼┼┼╪	╞┼┼┼╪┼┼┼┼┼┼┼┼┼┼┼┼	Upgrade of irradiation facilities	WP15
┼┼┼╞╪┼┼┼┼┼┼┼┼┼┼┼	┼┼┼┼┼┼┼┼┼┼┼┼┼┼	Testing of solid state materials with MeV ions	WP12
	┼┼┼┼┼┼┼╪	Testing of electromagnetic compatibility	WP12
┼┼┼┼┼╪╞┼┼┼┼┼┼╪	┼┼┼╪┼┼┼┼┼┼┼┼┼┼┼┼┼	RPC developments	WP3,4,13
┼┼┼┼╬┼╬┼┼╝┼╝	╷╷╷╷╷╷╷╷╷	MGPD developments	WP3,4,13
┼┼┼┼╋┼╋┼┼┼┼┼╋	┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	Gas detector infrastructure	WP13
┼┼┼┼╪┼╪┼┼┼┼┼┼┊	<u></u> <u></u> <u></u>	Electromagnetic calorimeters	WP3,4,5,14
┼┼┼┼<u>╪</u>┼┋╪╡ ┼ <u>╪</u> ┼┼┼┼┼	┼ <mark>╪┼┼┼╪</mark> ┼┼┼┼┼┼┼┼┼┼┼┼	Hadronic calorimeters	WP3,4,5,14
<u>····</u> ···		Forward calorimeters	WP4,5,14

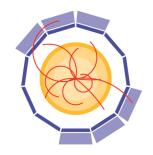


Implementation




Management

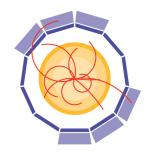
Work packages



Co-ordinators

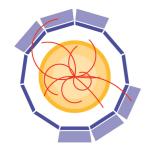
No	Туре	WP	WP coordinators	Institute
WP1	MGT	Project management and coordination	Svet Stavrev	CERN
WP2	NA1	Innovation and outreach	Marcello Lossasso	CERN
WP3	NA2	Advanced software	Witold Pokorski Frank Gaede	CERN DESY
WP4	NA3	Micro-electronics and interconnections	Christophe De La Taille Valerio Re	CNRS INFN
WP5	NA4	Data acquisition system for beam tests	Matthew Wing David Cussans	UCL UNIBRIS
WP6	NA5	Novel high voltage and resistive CMOS sensors	Ivan Peric Gianluigi Casse	KIT UNILIV
WP7	NA6	Advanced hybrid pixel detectors	Anna Macchiolo Ivan Vila	MPG-MPP CSIC
WP8	NA7	Large scale cryogenic liquid detectors	Dario Autiero	CNRS
WP9	NA8	New support structures and micro-channel cooling	Paolo Petagna Georg Viehhauser	CERN UOXF
WP10	TA1	Beam test facilities	Henric Wilkens Natalia Potylitsina	CERN DESY
WP11	TA2	Irradiation facilities	Marko Mikuz	JSI
WP12	TA3	Detector characterisation facilities	Stjepko Fazinic Fernando Arteche	RBI ITAINNOVA
WP13	JRA1	Innovative gas detectors	Silvia Dalla Torre Imad Laktineh	CNRS
WP14	JRA2	Infrastructure for advanced calorimeters	Roman Poeschl Frank Simon	CNRS MPG-MPP
WP15	JRA3	Upgrade of beam and irradiation test infrastructure	Federico Ravotti Marcel Stanitzki	CERN DESY

Felix Sefkow Berlin, March 5, 2015

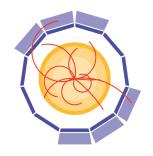

Deliverables

- Around 5 per WP
- Lead participant for each
- German responsibilities
 - WP3: software
 - event data model toolkit (DESY)
 - advanced tracking tools (DESY)
 - WP5: test beam DAQ
 - online event data model (DESY)
 - WP6: HV CMOS
 - sensor design guidelines (UBONN)
 - final report on devices (KIT)
 - WP7: pixel
 - final pixel characterisation (MPG-MPP)
 - WP10: test beam
 - trans-national access (DESY)
 - WP11: irradiation
 - trans-national access (KIT)

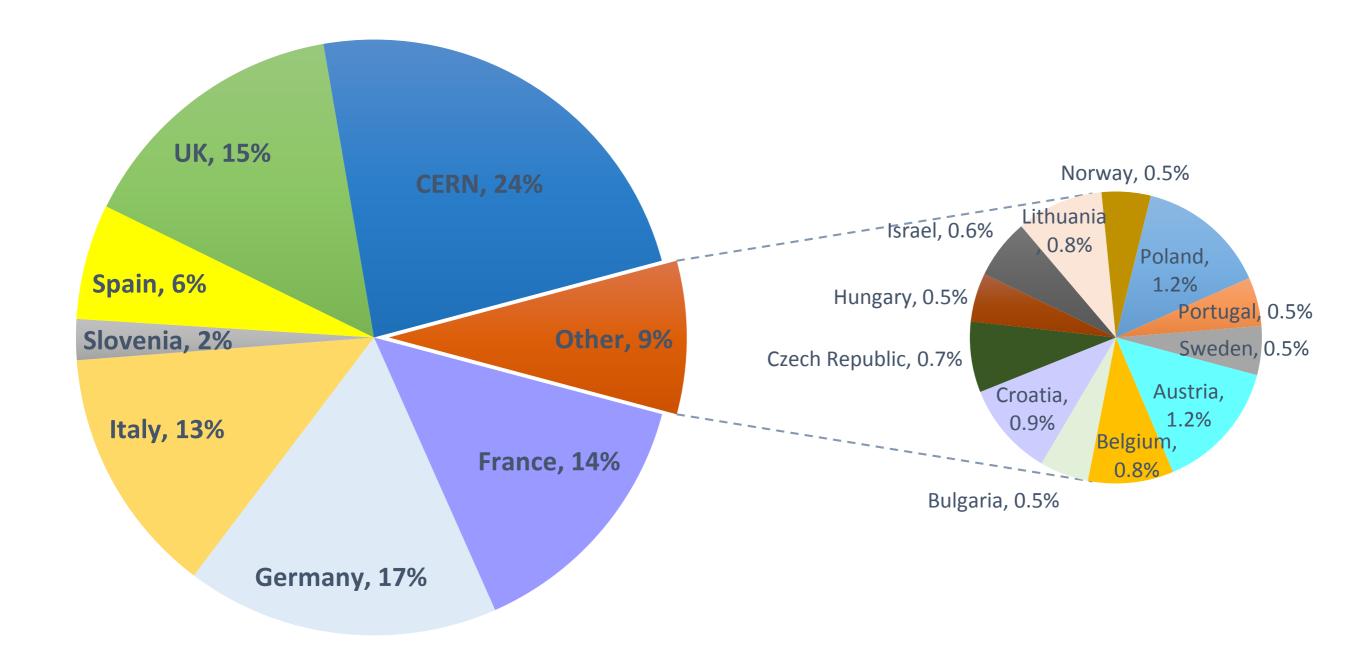
- German responsibilities (cont)
 - WP14 calorimeters
 - test infrastructure optical r/o (MPG-MPP)
 - common running of calorimeters; DAQ (DESY)
 - leak-less cooling system (DESY)
 - WP15: test beam upgrades
 - pixel telescope for CERN (DESY)
 - Si strip tracker for TPC tests (DESY)
 - Environmental control system (DESY)

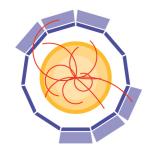


Resources


Overall

- Total EC request: 10M
 - Indirect cost fixed to -20%
- Total budget: 28.9M
 - including matching funds 66%
 - 2670 ppm
- Project duration: 4 years
- Management 3.5%
- Transnational access 13.4%
 - to users, no fees
- ~ 50% LHC, 25% LC, 25% general




By work package

Work package	Туре	PM	Total costs (€)	Requested EC contribution (€)	
WP1	MGT	60	892,569	349,331	Coord
WP2	NA1	71	809,556	538,000	Inno&Out
WP3	NA2	339	2,628,040	920,000	Soft
WP4	NA3	202	2,388,724	987,000	Microele
WP5	NA4	147	1,085,875	475,000	DAQ
WP6	NA5	213	1,790,332	719,000	HV CMOS
WP7	NA6	217	1,820,516	766,000	Pixels
WP8	NA7	214	1,718,944	500,000	Cryo
WP9	NA8	118	1,175,147	517,000	Mech&Cool
WP10	TA1	164	5,281,386	453,000	TA Testbeam
WP11	TA2	72	1,835,740	688,029	TA Irradiation
WP12	TA3	14	204,140	199,640	TA DetTest
WP13	JRA1	197	1,897,949	806,000	GasDet
WP14	JRA2	281	2,446,983	966,000	Calo
WP15	JRA3	361	2,947,650	1,116,000	TBupgrade
ТО	TAL	2,670	28,923,550	10,000,000	

By country

Conclusion

- Approval of AIDA-2020: evidence for competitiveness of particle physics
- 10M for detector R&D for our future
- Build on AIDA, but merge communities even more within common work packages
- Kick-off Meeting at CERN, June 3-5
- Scientific content: hopefully next time!