DEPFET Pixel Technology

- basics and recent developments -

Laci Andricek, MPG Halbleiterlabor, München

for the

DEPFET team at MPG HLL and the DEPFET Collaboration

Laci Andricek, MPG Halbleiterlabor

DEPFET Active Pixels

- fully depleted sensitive volume
- internal amplification
- Charge collection in "off" state, non-destructive read out on demand

Laci Andricek, MPG Halbleiterlabor

DEPFET Active Pixels

Laci Andricek, MPG Halbleiterlabor

DEPFET Active Pixels

Internal Amplification

Laci Andricek, MPG Halbleiterlabor

Single pixel performance – Fe55 Source

 $V_{thresh} \approx$ -0.2V, V_{gate} = -2V I_{drain} = 41 µA time cont. shaping τ = 10 µs Noise ENC=1.6 e⁻ (rms) at T>23 degC

Laci Andricek, MPG Halbleiterlabor

• An array of DEPFETs

Row wise read-out ("rolling shutter")

- select row with external gate, read current, clear DEPFET, read current again
- two different auxiliary ASICs needed
- r/o needs time.....
- only one row active \rightarrow low power consumption

Main DEPFET Classes

- pixel size: 100μm, with SDD around 100s of μm
- r/o time per row: few μs
- Noise: ≈4 el ENC
- fully depleted, the thicker the better \rightarrow large QE for higher E

High dynamic range, ultra-fast read-out: XFEL-DSSC

- DEPFET Sensor with Signal Compression
- pixel size: ~200 μm
- 1-to-1 bonded to r/o AISC
- frame rate in the MHz range

Thin & small & fast pixel: vertex, lowE electron detectors (TEM)

- pixel size: 20µm...75µm
- r/o time per row: 25ns-100ns
- Noise: ≈100 el ENC
- thin detectors: 50μ m... 75μ m \rightarrow still large signal: 40nA/ μ m for mip

BepiColombo – MIXS instrument

- :- ESA/Jaxa mission to Mercury, least explored planet in our system
- :- start July 2016, eta Jan. 2024
- :- 15 different instruments on board
- :- MIXS: Mercury Imaging X-ray Spectrometer
 - \mapsto ... surface atomic composition of Mercury
 - → x-ray fluorescence map in high spatial resolution
- Focal planes of MIXS:
- :- 2 DEPFET matrices format
 - ↦ 1.92 x 1.92 cm²
 - ➡ 64 x 64 pixels
 - → 300 x 300 µm size
- :- required energy resolution:
 - → 200 eV FWHM @ 1 keV
 - ᅛ QE > of 80 % @ 500 eV
- :- read-out time dominated by rad. damage
 - **└→** < 200 μs
- :- Radiation tolerance
 - ↦ ~ 20 krad TID
 - → 3 x 10¹⁰ 10 MeV p/cm² → 1.11 x 10¹¹ 1 MeV n_{eq}/cm²

:- Status: focal plane finished, cameras being assembled and tested

electron potential [V]

- \triangleright Operating conditions
 - ⊶ -40 °С
 - \rightarrow T_{row} = 5.2 µs
 - \rightarrow T_{frame} = 167 µs / frame
 - └→ Framerate ~ 6 kfps
 - \rightarrow I_{pixel} = 125 µA
- ▷ Noise: 4.3 e- rms

Towards a pixel vertex detector for Belle II

The Result – Belle II PXD

	L1	L2
# modules	8	12
Distance from IP (cm)	1.4	2.2
Thickness (µm)	75	75
#pixels/module	768x250	768x250
#of address and r/o lines	192x1000	192x1000
Total no. of pixels	3.072x10 ⁶	4.608x10 ⁶
Pixel size (µm ²)	55x50 60x50	70x50 85x50
Frame/row rate	50kHz/10MHz	50kHz/10MHz
Sensitive Area (mm ²)	44.8x12.5	61.44x12.5

vertex resolution significantly improved

Laci Andricek, MPG Halbleiterlabor 8

Reducing material in the barrel region

 \rightarrow less material with small modifications/improvements of module technology within reach

DEPFET Prototype Fabrication and "Thinning" – PXD6

Laci Andricek, MPG Halbleiterlabor 8th Detector Work

- Half-ladders (modules) are laser-cut
- Modules are supported by a monolithic silicon frame
- Two inner (outer) modules are assembled to inner (outer) ladders

Sensor and r/o electronics: Beam tests with the full system

MPG

PXD6 Belle II design

- \triangleright Thin (**50** µm) sensor 32x64 pixels
- \triangleright Pitch 50x75 μ m²
- ▷ SwitcherB and DCDB at full speed
- ▷ Belle II prototype power supply
- ▷ DCDB readout at 320 MHz \rightarrow 100 ns row time
- ▷ 99% Efficiency
- ▷ S/N for MIPs: 20-40 depending on gate length

Transition from test systems to integrated modules

- » PCB for the various matrices "hybrids"
- » first bump bonded chip on PXD6 prototype matrices
 - \rightarrow 2 metal layers, not the final geometry, simple 3rd metal
 - \mapsto need still support PCB for I/O
 - \mapsto not perforated balcony
- » Belle-II PXD Module (two modules form a ladder)
 - \hookrightarrow three metal layers, Cu as LM only on periphery
 - \mapsto MCM: 4 DCD, 4 DHP, 6 Switchers \rightarrow ~3000 bonds/module
 - \hookrightarrow Cu as UBM, bumps partly on thinned perforated frame
 - \mapsto passive components soldered to substrate
 - \rightarrowtail I/O and power over Kapton cable

2

Extensive test program

- Interconnect technology
- > Powering, control, DAQ
- » Signal integrity, timing ...

. . .

Lessons learned applied to final module layout

```
\rightarrow PXD pilot production launched!
```

The SuperKEKB injection noise issue

- » continuous injection → ~ 400 revolutions with two noisy bunches (100ns apart) every 20 ms
- » DEPFET integrates two trains, these noisy bunches would blank the frames → 20% loss of data

- » the best solution: gate the DEPFET during the passage of the noisy bunches
- » 100ns gate, with some rise and fall times, twice per frame ... is this possible?

Blinding the DEPFET

normal operation

- » charge collection mode
 - » ext. gate off (positive), clear in off state (close to Ø)
 - » generated e- drift into internal gate (most positive potential)
 - » clear is shielded by depleted deep p-well (negative space charge)
- » read mode
 - » ext. gate on (negative), clear off
 - » sensor is still sensitive
- » clear mode
 - » ext. gate on (negative), clear on (positive 15..20V)
 - » internal gate drained to *clear,* as well as all charges coming from bulk

- ightarrow clear mode is basically already the blind mode, bulk generated charge drifts directly into clear
- \rightarrow how "blind" is this mode, how much charge goes into the internal gate, if *clear* is positive?
- \rightarrow how can signal charge stored in the internal gate be preserved during blind mode?

Incomplete Clear (this time on purpose!!)

normal clear

- » implantations and ext. voltages carefully adjusted
- » signal charge overcomes by thermionic emission a well defined potential barrier and drifts to clear

suppressed clear

- » positive voltage on ext. gate (more off)
 - » cap. coupling of int. gate, also more positive
- » potential barrier for signal charge to high » even for high clear voltages, no clearing possible
- \rightarrow applying the clear pulse and keeping the DEPFET in off state conserves the charge in the int. gate
- \rightarrow clear is positive: new charge drifts directly to clear

experimental confirmation

experiment:

- » PXD6 matrix, 450 µm thick, installed in mini-matrix test setup
- » irradiation from the back, Laser 660 nm
- $\, \ast \,$ laser spot in the center of the pixel $\, \rightarrow \,$ worst case scenario for blind mode

Jan Scheirich, Prague

- There is no such thing like "the DEPFET" sensor cell is always optimized for spec. application
 - \rightarrow pixel size 20µm \rightarrow ~mm
 - → shaped response (linearity, charge handling capability..)
 - → special operation modes
 - » electronic shutter to make the cell insensitive
 - » double DEPFET structures for dead time free read-out
 - » multiple read-out for noise reduction
 - \gg
- Main applications are
 - → spectroscopic x-ray imaging
 - \mapsto high precision vertexing
 - → new fields emerging: direct electron detectors
- Biggest DEPFET project as of today: Belle II PXD
 - → all process modules: front-end + thinning + three metals ready
 - → pilot batch started
 - \mapsto exicting times

Thank you for your attention!!

Belle II Background – rad. damage - TiD

Total ionizing dose:

- ▷ L1 ~2 Mrad/smy
- ▷ L2 ~0.6 Mrad/smy
- ▷ Fairly uniform over Z

Effect on DEPFET:

- \triangleright Δ Vth after 10Mrad ~5V
 - \mapsto uniformity of response to radiation?
- \triangleright ASICs to allow for additional pedestal variation

Irradiation effects (after ≈ 1 Mrad ⁶⁰Co)

No change of g_m but increased interface trap density (912 krad $\rightarrow \Delta Nit \approx 7.10^{11} \text{ cm}^{-2}$)

Open questions:

- Noise contributions after irrad.?
- Internal amplification g_a?
- Leakage current?

▶ ⁵⁵Fe Spectrum (before and after \approx 1Mrad ⁶⁰Co)

Integrated micro-channels

A spin-off of SOI approach : thinned all-silicon module with integ. cooling

- :- most heat generated by read-out ASICs
- :- idea: integrate channels into handle wafer beneath the ASICs
- :- channels etched before wafer bonding \rightarrow cavity SOI (C-SOI)
- :- full processing on C-SOI, thinning of sensitive area
- :- micro-channels accessible only after cutting (laser)

First thermal samples for testing

DEPFET Sensor with Signal Compression - DSSC

Scaling the thickness - µ-mechanics

Laci Andricek, MPG Halbleiterlabor