Development of CMOS Pixel Sensors for HIGH-PRECISION Vertexing & Tracking Devices

M. Winter (PICSEL team of IPHC-Strasbourg)

Terascale Workshop, Berlin 6th of March 2015

Contents

- Primordial motivations & main features of CMOS sensors
- 1st architecture developped state of the art
 - MIMOSA-26 (EUDET chip applications) \mapsto MIMOSA-28 (STAR-PXL)
- Extension towards more demanding experiments
 - ALICE-ITS & -MFT CBM-MVD ILC
- Perspectives & forthcoming challenges
 - read-out speed & rad. tolerance
 architectures & emerging CMOS technologies
- Conclusion

SOURCES : Talks at CPIX-14 + VERTEX-14 + FEE-14 + TWEPP-13/14 + LHCC/ALICE

SLIDES : M.Deveaux, L.Greiner, Ch.Hu-Guo, M.Keil, M.Mager, L.Musa, F.Morel, D.Muenstermann, I.Peric, F.Reidt, W.Snoeys

Motivation for Developing CMOS Sensors

- CPS development triggered by need of very high granularity & low material budget
- Applications exhibit much milder running conditions than pp/LHC
 - \Rightarrow Relax speed & radiation tolerance specifications
- Increasing panel of existing, foreseen or potential application domains :
 - Heavy Ion Collisions : STAR-PXL, ALICE-ITS, CBM-MVD, NA61, ...
 - **e**⁺**e**⁻ **collisions :** ILC, BES-3, ...
 - Non-collider experiments : FIRST, NA63, Mu3e, PANDA, ...
 - High precision beam telescopes adapted to medium/low energy electron beams :
 - \hookrightarrow few μm resolution achievable on DUT with EUDET-BT (DESY), BTF-BT (Frascati), ...

Quadrature of the

Example of Application : ILC Vertex Detector

- Goal : $\sigma_{sp}\lesssim$ 3 μm in both directions with \lesssim 0.15 % X $_0$ / layer
- Comparison: σ_{sp} = 3x3 μm^2 & 0.15 % X $_0$ against 14x70 μm^2 & 1.0 % X $_0$

Example of Application : Upgrade of ALICE-ITS

- ALICE Inner Tracking System (ITS) foreseen to be replaced during LS2/LHC
 - \rightarrow higher luminosity, improved charm tagging
- Expected improvement in pointing resolution and tracking efficiency

Long Term R&D

- R&D activity of CPS initiated in 1999 for future subatomic physics experiments
- First contact for STAR PXL took place in Year 2000 during the workshop Vertex-2000

CMOS Pixel Sensors: Main Features

- Prominent features of CMOS pixel sensors :
 - high granularity \Rightarrow excellent (micronic) spatial resolution
 - $_\circ\,$ signal generated in very thin (15-40 μm) epitaxial layer
 - $\hookrightarrow\,$ resistivity may be \gg 1 k $\Omega\cdot cm$
 - $_\circ\,$ signal processing μ -circuits integrated on sensor substrate
 - \Rightarrow impact on downstream electronics and syst. integration (\Rightarrow cost)
- CMOS pixel sensor technology has the highest potential :
- ⇒ R&D largely consists in trying to exploit potential at best with accessible industrial processes
 - → manufacturing param. not optimised for particle detection:
 wafer/EPI characteristics, feature size, N(ML), ...

Twin-Well passivation oxide p-epi p-epi p++ substrate recombination

Quadruple-Well

- Read-out architectures :
 - 1st generation : rolling shutter (synchronous) with analog pixel output (end-of-column discri.)
 - 2nd generation : rolling shutter (synchronous) with in-pixel discrimination
 - 3rd generation : data driven (asynchronous) with in-pixel discrimination

6

Measured Spatial Resolution

- Several parametres govern the spatial resolution :
 - pixel pitch
 - epitaxial layer thickness and resistivity
 - sensing node geometry & electrical properties
 - signal encoding resolution

 $\Rightarrow \sigma_{sp}$ fct of pitch \oplus SNR \oplus charge sharing \oplus ADCu, ...

Impact of pixel pitch (analog output) :

 $\sigma_{f sp} \sim {f 1} \; \mu{f m}$ (10 μm pitch) $ightarrow \, \lesssim {f 3} \; \mu{f m}$ (40 μm pitch)

Impact of charge encoding resolution :

$$\,\,>\,\,$$
 ex. of 20 μm pitch $\,\,\Rightarrow\,\,\,\sigma^{digi}_{sp}$ = pitch/ $\sqrt{12}$ \sim 5.7 μm

Nb of bits	12	3-4	1	
Data	measured	reprocessed	measured	
σ_{sp}	\lesssim 1.5 μm	\lesssim 2 μm	\lesssim 3.5 μm	

Mimosa resolution vs pitch

pitch (microns)

Example of Application : Upgrade of ALICE-ITS

- Typical components of read-out chain :
 - AMP : In-pixel low noise pre-amplifier
 - Filter : In-pixel filter
 - **ADC :** Analog-to-Digital Conversion : 1-bit \equiv discriminator
 - \longrightarrow may be implemented at column or pixel level
 - Zero suppression : Only hit pixel information is retained and transfered
 - \longrightarrow implemented at sensor periphery (usual) or inside pixel array
 - Data transmission : O(Gbits/s) link implemented on sensor periphery
- Read-Out alternatives :
 - Synchronous: rolling shutter architecture
 Asynchronous: data driven architecture
 - Asynchionous. data driven architecti
- Rolling shutter : best approach for twin-well processes
 - \rightarrow trade-off between performance, design complexity, pixel dimensions, power, ...

 \hookrightarrow MIMOSA-26 (EUDET), MIMOSA-28 (STAR), ...

CMOS Pixel Sensors: Established Architecture

- Main characteristics of MIMOSA-26 sensor equipping EUDET BT :
 - $_{\circ}~$ 0.35 μm process with high-resistivity epitaxial layer (coll. with IRFU/Saclay)
 - $_{\odot}\,$ column // architecture with in-pixel amplification (cDS) and end-of-column discrimination, followed by $\ensuremath{\varnothing}$
 - binary charge encoding
 - active area: 1152 columns of 576 pixels (21.2 \times 10.6 mm²)
 - $_{\circ}\,$ pitch: 18.4 $\mu m
 ightarrow \, \sim$ 0.7 million pixels
 - hinspace charge sharing $\Rrightarrow~\sigma_{sp}$ \sim 3.-3.5 μm
 - $\circ~~ {
 m t}_{r.o.} \lesssim$ 100 μs (\sim 10 4 frames/s)
 - \hookrightarrow suited to >10⁶ part./cm²/s
 - JTAG programmable
 - rolling shutter architecture
 - \Rightarrow full sensitive area dissipation \cong 1 row
 - $ho~\sim$ 250 mW/cm 2 power consumption (fct of N_{col})
 - $_\circ~$ thinned to 50 μm (yield \sim 90 %)

• Various applications : VD demonstrators, NA63, NA61, FIRST, oncotherapy, dosimetry, ...

PXL in STAR Inner Detector Upgrades

STAR HFT

State-of-the-Art: MIMOSA-28 for the STAR-PXL

- Main characteristics of ULTIMATE (\equiv MIMOSA-28):
 - $\circ~$ 0.35 μm process with high-resistivity epitaxial layer
 - column // architecture with in-pixel cDS & amplification
 - end-of-column discrimination & binary charge encoding
 - on-chip zero-suppression
 - $_{\circ}~$ active area: 960 colums of 928 pixels (19.9imes19.2 mm 2)
 - pitch: 20.7 μm → ~ 0.9 million pixels
 → charge sharing ⇒ $\sigma_{sp} \gtrsim$ 3.5 μm
 - JTAG programmable
 - t_{r.o.} \lesssim 200 μs (\sim 5×10³ frames/s) \Rightarrow suited to >10⁶ part./cm²/s
 - 2 outputs at 160 MHz
 - $_{\circ}~\lesssim$ 150 mW/cm 2 power consumption

 \triangleright \triangleright \triangleright Sensors FULLY evaluated/validated : (50 μ m thin)

- \circ N \leq 15 e⁻ENC at 30-35°C
- $\circ \ \epsilon_{det}$, fake & σ_{sp} as expected
- \circ Rad. tol. validated (3.10 12 n $_{eq}$ /cm 2 & 150 kRad at 30 $^{\circ}$ C)
- All specifications were met \Rightarrow 2 detectors of 40 ladders constructed

 $\triangleright \triangleright \triangleright$ 1st physics data taking : March to June 2014 \mapsto measured $\sigma_{ip}(p_T)$ match requirements

Mimosa 28 - epi 20 um - NC

State-of-the-Art : STAR-PXL

Validation of CPS for HEP (25/09/14 : DoE final approval, based on vertexing performance assessment)

Preliminary Results of STAR-PXL Run : Hit multiplicity

• Hit pixel multiplicity per ladder (\equiv 10 chips) and per layer (courtesy of STAR collaboration)

\Rightarrow Inner barrel sensors see O(100) hits (\equiv 4 pixels) per frame

Preliminary Results of STAR-PXL Run

- Benchmark : measured impact parametre resolution for 700-800 MeV/c kaons :
 - $_\circ\,$ Figure (courtesy of STAR collaboration) displays resolutions on DCA in R Φ and Z
 - Data collected with low luminosity (clean TPC environment)
 - Tracks traversing the ladders equipped with AI traces
 - Results are still **PRELIMINARY**

 \Rightarrow 40 μm obtained for 700-800 MeV/c kaons in both directions, as expected

Next Challenge : ALICE-ITS Upgrade

- Upgrade of ITS entirely based on CPS :
 - Present geometry: 6 layers
 HPS x 2 / Si-drift x 2 / Si-strips x 2
 - ∘ Future geometry : 7 layers \mapsto \mapsto \mapsto all with CPS (~ 25-30 · 10³ chips) \Rightarrow 1st large tracker (10 m²) using CPS
 - ITS-TDR approved March 2014 :

Pub. in J.Phys. G41 (2014) 087002

Requirements for ITS inner and outer barrels compared to specifications of STAR-PXL chip :

	σ_{sp}	$t_{r.o.}$	Dose	Fluency	T_{op}	Power	Active area
STAR-PXL	$<$ 4 μm	$<$ 200 μs	150 kRad	$3{\cdot}10^{12}~{ m n}_{eq}/{ m cm}^2$	30-35°C	160 mW/cm 2	$0.15~\mathrm{m}^2$
ITS-in	\lesssim 5 μm	\lesssim 30 μs	700 kRad	1·10 13 n $_{eq}$ /cm 2	30°C	$<$ 300 mW/cm 2	$0.17~\mathrm{m}^2$
ITS-out	\lesssim 10 μm	\lesssim 30 μs	15 kRad	4·10 11 n $_{eq}$ /cm 2	30°C	$<$ 100 mW/cm 2	\sim 10 m 2

 \Rightarrow 0.35 μm CMOS process (STAR-PXL) marginally suited to read-out speed & radiation tol.

CMOS Process Transition : STAR-PXL \mapsto **ALICE-ITS**

<u>Twin well process: 0.6-0.35 μm</u>

 Use of PMOS in pixel array is not allowed because any additional N-well used to host PMOS would compete for charge collection with the sensing N-well diode VNH

- here are a strategy by the strategy by the strategy here are an are strategy to the strategy by the strategy strategy are strategy and strategy are strategy are
- Section Already demonstrate excellent performances
 - STAR PXL detector: MIMOSA28 are designed in this AMS-0.35 μm process
 - $\checkmark \epsilon_{eff} > 99.5\%, \sigma < 4 \,\mu m$
 - 1st CPS based VX detector at a collider experiment

- Quadruple well process (deep P-well): 0.18 μm
 - N-well used to host PMOS transistors is shielded by deep P-well
 - 🗞 Both types of transistors can be used

- % Widens choice of readout architecture strategies
 - Ex. ALICE ITS upgrade: 2 sensors R&D in // using TOWER CIS 0.18 μm process (quadruple well)
 - Synchronous Readout R&D:
 - y proven architecture = safety
 - Asynchronous Readout R&D: challenging

Sensing Node & VFEE Optimisation

- General remarks on sensing diode :
 - $_{\circ}$ should be small because : V $_{signal}$ = Q $_{coll}$ /C ; Noise \sim C ; G $_{PA}$ \sim 1/C
 - $_{\circ}\,$ BUT should not be too small since Q $_{coll} \sim$ CCE (important against NI irradiation)
- General remarks on pre-amplifier connected to sensing diode :
 - should offer high enough gain to mitigate downstream noise contributions
 - should feature input transistor with minimal noise (incl. RTS)
 - should be very close to sensing diode (minimise line C)
- General remarks on depletion voltage :
 - $_{\circ}\,$ apply highest possible voltage on sensing diode preserving charge sharing $\mapsto \sigma_{sv}$
 - alternative : backside/reverse biasing

⇒ Multiparametric trade-off to be found, based on exploratory prototypes rather than on simulations

Charge Sensing Element \mapsto Optimal SNR

• Influence of sensing diode area

• Benefit from reducing the sensing diode area

 $_\circ~$ sensing diode cross-section varied from 10.9 μm^2 to 8 μm^2 underneath 10.9 μm^2 large footprint

 \rightarrow suppresses low SNR tail \mapsto enhances detection efficiency (and mitigates effect of fake rate)

ITS Pixel Chip – two architectures

Pixel pitch	28µn
Event time resolution	~2µs
Power consumption	39m
Dead area	1.1 n

28μm x 28μm ~2μs 39mW/cm² 1.1 mmx30mm Pixel pitch Event time resolution Power consumption^(*) Dead area 36μm x 64μm ~20μs 97mW/cm² 1.7 mm x 30mm

ALPIDE and MISTRAL-O have same dimensions (15mm x 30mm), identical physical and electrical interfaces: position of interface pads, electrical signaling, protocol L. Musa (LHCC 03/03/15) (*) might further reduce to 73mW/cm²

Synchronous Read-Out Architecture : Rolling Shutter Mode

Design addresses 3 issues:

✤ A to D Conversion: at column-level (MISTRAL)

at pixel-level (ASTRAL)

Sero suppression (SUZE) at chip edge level

Window of 4x5 pixels

- Power vs speed:
 - ✤ Power: only the selected rows (N=1, 2, ...) to be read out
 - Speed: N rows of pixels are read out in //
 - Integration time = frame readout time

$$t_{\rm int} = \frac{\left(Row \ readout \ time\right) \times \left(No. \ of \ Rows\right)}{N}$$

Detection Performances of MISTRAL Building Block

• ϵ_{det} , fake rate, σ_{res} vs Discriminator Threshold : Noise averaged over 11 thinned sensors

• MISTRAL-O composed of 3-4 identical Full Scale Building Blocks operated in parallel & multiplexed at their outputs (prototype pixel dim. : 22 x 33 μm^2)

- Beam tests with a few GeV electrons (DESY)
- \hookrightarrow Valid threshold range \sim 7–12 TN (T = 30 $^{\circ}$ C)
 - $_{\circ}~\epsilon_{det}$ > 99 % and σ_{sp} \lesssim 5 μm
 - Fake rate (\equiv noise fluctuations) < 10⁻⁵

Asynchronous Read-Out Architecture : ALPIDE (Alice Plxel DEtector)

- Design concept similar to hybrid pixel read-out architecture exploiting availability of TJsc CIS quadruple well process : pixel hosts N- & P-MOS transistors
- Each pixel features a continuously power active
 - low power consumming analogue front end (P < 50 nW/pixel)
 based on a single stage amplifier with shaping / current comparator
 - amplification gain \sim 100
 - shaping time \sim few μs
 - Data driven read-out of the pixel matrix
 - \Rightarrow only zero-suppressed data are transfered to periphery

Asynchronous Read-Out Architecture : ALPIDE

ALPIDE Detection Performance Assessment

- ALPIDE-1 beam tests (5–7 GeV pions) :
 - $_{\circ}~$ Final sensor dimensions : 15 mm \times 30 mm
 - $_\circ~$ About 0.5 M pixels of 28 $\mu m imes$ 28 μm
 - 4 different sensing node geometries
 - Possibility of reverse biasing the substrate
 - ←→ default : 3 V
 - Possibility to mask pixels (fake rate mitigation) \hookrightarrow default : $\leq O(10^{-3})$ masked pixels

Tolerance to Ionising Radiation

Tolerance to Non-Ionising Radiation

- Main parametres governing the tolerance to NI radiation :
 - epitaxial layer : thickness and resistivity
 - sensing node : density, geometry, capacitance, depletion voltage
 - operating temperature
 - read-out integration time
- Most measurements performed with chips manufactured in two CMOS processes :
 - $\circ~$ 0.35 μm with low & high resistivity epitaxy
 - $_{\circ}~$ 0.18 μm with high & resistivity epitaxy (mainly 18 & 20 μm thick)

 $Pitch_{eff} [\mu m] = Sqrt(pixel surface)$

- Clear improvement with 0.18 μm process w.r.t. 0.35 μm process
 - ALICE-ITS requirement seems fulfiled : 700 kRad & $10^{13} n_{eq}/cm^2$ at T = +30°C
 - $_{\rm o}\,$ Fluences in excess of 10 $^{14}{\rm n}_{eq}/{\rm cm}^2$ seem within reach
 - \Rightarrow requires global optimisation of design & running parametres

Forthcoming Challenges

How to reach the bottom right corner of the "Quadrature"?

Improving Speed and Radiation Tolerance

O(10 2) μs

How to improve speed & radiation tolerance while preserving 3-5 μm precision & < 0.1% X₀ ?

O(10) μs

O(1) μs

EUDET/STAR

2010/14

 $\rightarrow \rightarrow \rightarrow$

ALICE/CBM 2015/2019

 \rightarrow

?X?/ILC ≳ 2020

Further Perspectives of Performance Improvement

- Expected added value of HV-CMOS :
 - Benefits from extended sensitive volume depletion :
 - faster charge collection
 - higher radiation tolerance
 - Not bound to CMOS processes using epitaxial wafers
 - \Rightarrow easier access to VDSM (< 100 nm) processes
 - \Rightarrow higher in-pixel micro-circuit density
- Questions : minimal pixel dimensions vs $\sigma_{sp} \lesssim$ 3 μm ?
 - uniformity of large pixel array, yield ?
- Attractive possible evolution : 2-tier chips
 - signal sensing & processing functionnalities distributed over 2 tiers interconnected at pixel level (capa. coupling)
 - combine 2 different CMOS processes if advantageous :
 - 1 optimal for sensing, 1 optimal for signal processing
 - benefit : small pixel \mapsto resolution, fast response,

data compression, robustness ?

challenge : interconnection technology (reliability, cost, ...)

Ivan Peric: CPIX14, Bonn, 2014

CONCLUSION

- CPS have demonstrated that they can provide the spatial resolution and material budget required for numerous applications
- CPS are suited for vertex detectors (\ll 1 m²)
 - \hookrightarrow attractive features for tracking devices (\gg 1 m²), incl. cost (!)
- Forthcoming & Upcoming challenges :
 - Large active area : ALICE-ITS \equiv 10 m² to cover with 20-30,000 sensors
 - Radiation tolerance : \gtrsim 10 MRad & \gtrsim 10¹⁴ n_{eq}/cm² (e.g. CBM at SIS-300)
 - **Read-out speed :** \lesssim 1 μs (e.g. ILC vertex detector & tracker)
- Perspectives :
 - HV-CPS but exposed to challenges if small pixels and very low power consumption are required

 \hookrightarrow VDSM processes ?

• 2-tier sensors \equiv (sensing + ampli) \oplus (sparsification + data transfer)

combining 2 CMOS processes at pixel level

 \hookrightarrow still an R&D ...

CMOS Pixel Sensors (CPS): A Long Term R&D

Ultimate objective: ILC, with staged performances

✤ CPS applied to other experiments with intermediate requirements

EUDET 2006/2010

ILC >2020 International Linear Collider

EUDET (R&D for ILC, EU project)
STAR (Heavy Ion physics)
CBM (Heavy Ion physics)
ILC (Particle physics)
HadronPhysics2 (generic R&D, EU project)
AIDA (generic R&D, EU project)
FIRST (Hadron therapy)
ALICE/LHC (Heavy Ion physics)
EIC (Hadron physics)
CIVC (Particle physics)
BESIII (Particle physics)

....

<u>CBM >2018</u> <u>Compressed Baryonic Matter</u>

<u>STAR 2013</u> Solenoidal Tracker at RHIC

ALICE 2018 A Large Ion Collider Experiment

Charge Sensing Element \mapsto Optimal SNR

• Influence of sensing diode area

- Optimum sensing diode geometry between
 - the smallest for the sake of C, N, G_{PA}
 - but not too small to preserve CCE (rad. tol.)
- $_{\circ}~$ 10.9 μm^{2} large sensing diode
- $_{\circ}\,$ 8 μm^{2} cross-section sensing diode underneath 10.9 μm^{2} large footprint
 - \hookrightarrow Improves SNR \mapsto Detection efficiency

Large Pixels for Outer Layers ?

• Motivation for LARGE pixels : reduced power (& read-out time) in case of alleviated spatial resolution requirement

 \hookrightarrow adequate for L3-6 (also required rad. tol. alleviated)

• Difficulty : keep high CCE (all over the pixel) without substantial (capacitive) noise increase and gain loss

- Results : tests with 4.4 GeV electrons, no in-pixel CDS
 - * SNR(MPV) \simeq 42.1 \pm 0.7 \Rightarrow $\epsilon_{det} \simeq$ 100 %
 - * cluster multiplicity (22×66) \simeq cluster multiplicity (22×33) \simeq 3 (mean)

MISTRAL & ASTRAL : Schematics & Layouts

• **MISTRAL** : rolling shutter with 2-row read-out & end-of column discriminators

• **ASTRAL** : rolling shutter with 2-row read-out (\equiv MISTRAL) & in-pixel discriminators

• 1st Full Scale Building Blocks (FSBB) fab. in Spring '14 \mapsto FSBB-M0 tests \pm completed

MISTRAL Architecture Validation

- 1st step : Separate validation of each element composing signal sensing & processing chain :
 - Pixel array with 1-row read-out (1 discri./column) 0
 - Pixel array with 2-row read-out (2 discri./column)
 - Zero suppression circuitry with output buffers
- 2nd step : FSBB-M \cong 1/3 of MISTRAL :

10⁻¹ 10-2

10⁻³ 10-

10^{-t} 10-6

10-7 **10⁻⁸**

10-11

Synchronous Read-Out Architecture : In-Pixel Discrimination

To provide adequate performance within small pixel

- Structure selection: speed & power & offset mitigation vs area
 - Differential structure: preferable in mixed signal design
 - Two auto-zero amplifying stages + dynamic latch
 - OOS (Out Offset Storage) for the first stage and IOS (Input Offset Storage) for the second
 - Gain and power optimized amplifier
- ✤ Very careful layout design to mitigate cross coupling effects
- 🤟 Conversion time: 100 ns; current: ~14 μA/discriminator
- Test results of in-pixel discriminator:
 - Discriminators alone: TN ~ 0.29 mV, FPN ~ 0.19 mV
 - Discriminators + FEE: TN ~ 0.94 mV, FPN ~ 0.23 mV

Asynchronous Read-Out Architecture : ALPIDE (Alice Plxel DEtector)

- Design concept similar to hybrid pixel readout architecture thanks to availability of Tower CIS quadruple well process: both N & P MOS can be used in a pixel
- Each pixel features a continuously power active:
 - Low power consumption analogue front end (Power < 50 nW/pixel) based on a single stage amplifier with shaping / current comparator
 - High gain ~100
 - Shaping time few μs
 - Dynamic Memory Cell, ~80 fF storage capacitor which is discharged by an NMOS controlled by the Front-End
- Data driven readout of the pixel matrix, only zerosuppressed data are transferred to the periphery

Perspectives : 2-Tier HV-CPS

- Attractive possible evolution : 2-tier chips
 - signal sensing & processing functionnalities distributed over 2 tiers interconnected at pixel level (capa. coupling)
 - combine 2 different CMOS processes if advantageous : 0 1 optimal for sensing, 1 optimal for signal processing
 - benefit : small pixel \mapsto resolution, fast response, 0 data compression, robustness?
 - challenge : interconnection technology (reliability, cost, ...)
- On-going R&D : ATLAS upgrade for HL-LHC
 - HV2FEI4 chip \equiv sensitive HV-CPS tier (180 nm process) interconnected to FEI4 ROC (130 nm process)
 - radiation tolerance test results encouraging, threshold dispersion? 0
 - promising perspective : high-resistivity EPI (\cong ALICE-ITS)
- Other applications envisaged/foreseen :
 - ATLAS strip like read-out CLIC vertex detector
 - Mu3e experiment : analog pixel read-out with remote signal processing circuitry 0

38

Boundaries of the CPS Development

39

- New fabrication process :
 - Expected to be radiation tolerant enough
 - Expected to allow for fast enough read-out
 - $_{\circ}\,$ Larger reticule (\lesssim 25 mm \times 32 mm)
- Drawbacks of smaller feature size
 - 1.8 V operating voltage (instead of 3.3 V)
 - ⇒ reduced dynamics in signal processing circuitry and epitaxy depletion voltage
 - increased risk of Random Telegraph Signal (RTS) noise
- Consequences of the large surface to cover
 - good fabrication yield required \Rightarrow sensor design robustness
 - mitigate noisy pixels (data transmission band width)
 - sensor operation should be stable along 1.5 m ladder (voltage drop !)
 - minimal connections to outside world (material budget)
 - \Rightarrow impacts sensor periphery (slow control, steering parametres, ...)

STAR-PXL	ALICE-ITS	added-value		
0.35 μm	0.18 μm	speed, TID, power		
4 ML	6 ML	speed. power		
twin-well	quadruple-well	speed, power		
EPI 14/20 μm	EPI 18/40 μm	SNR		
EPI \gtrsim 0.4 k $\Omega \cdot cm$	EPI \sim 1 - 8 k $\Omega \cdot cm$	SNR, NITD		

Sensing Node & VFEE Optimisation

- General remarks on sensing diode :
 - $_{\circ}$ should be small because : V $_{signal}$ = Q $_{coll}$ /C ; Noise \sim C ; G $_{PA}$ \sim 1/C
 - $_{\circ}\,$ BUT should not be too small since Q $_{coll} \sim$ CCE (important against NI irradiation)
- General remarks on pre-amplifier connected to sensing diode :
 - should offer high enough gain to mitigate downstream noise contributions
 - should feature input transistor with minimal noise (incl. RTS)
 - should be very close to sensing diode (minimise line C)
- General remarks on depletion voltage :
 - $\circ\,$ apply highest possible voltage on sensing diode preserving charge sharing $\mapsto \sigma_{sp}$
 - alternative : backside biasing

⇒ Multiparametric trade-off to be found, based on exploratory prototypes rather than on simulations

Outcome of 2012 Exploration of the 0.18 μm Process

- STEPS VALIDATED IN 2012 :
 - * Several in-pixel amplifier variants lead to satisfactory SNR & det. eff. $(20 \times 20 \ \mu m^2)$ incl. after 1 MRad & $10^{13} n_{eq}/cm^2$ at 30° C
 - * Results pres. at VCI-2013 (J. Baudot)
- CALL FOR IMPROVEMENT :
 - Pixel circuitry noise : tail due few noisy pixels
 - \hookrightarrow attributed to RTS noise

Established knowledge on radiation tolerance

34

Sensors: IPHC Strasbourg M. Deveaux, D. Doering, S.

Strohauer, CBM/IKF Frankfurt

Pixel Optimisation : Epitaxial Layer and Sensing Node

- Pixel charge coll. perfo. for HR-18 & VHR-20 (no in-pixel CDS) :
 - * SNR distributions \rightarrow MPV & low values tail
 - $\ast\,$ 22 \times 33 μm^2 (2T) pixels at 30 $^\circ$ C

\Rightarrow Results :

- $\diamond~$ only \sim 0.1 % of cluster seeds exhibit SNR \lesssim 7–8
- \diamond SNR(VHR-20) \sim 5-10% higher than SNR(HR-18)

- $\ast\,$ 10.9 μm^2 large sensing diode
- * 8 μm^2 cross-section sensing diode underneath 10.9 μm^2 large footprint

\Rightarrow Results :

- $\diamond~8~\mu m^2$ diode features nearly 20% higher SNR(MPV) & much less pixels at small SNR (e.g. SNR <10)
 - \hookrightarrow Q $_{clus} \simeq$ 1350/1500 e $^-$ for 8/10.9 μm^2
- \Rightarrow marginal charge loss with 8 μm^2 diode
- \diamond radiation tolerance to 250 kRad & 2.5 \cdot 10¹² n_{eq}/cm² at 30°C OK

0.002

0.00

In-Pixel Pre-Amp & Clamping : SNR of Pixel Array

- MIMOSA-22THRa1 exposed to \sim 4.4 GeV electrons (DESY) in August 2013
- Analog outputs of 8 test columns (no discri.)

 \hookrightarrow SNR with HR-18 epitaxy, at T=30 $^{\circ}$ C

- * Noise determination with beamless data taking
- * Ex: S2 (T gate L/W=0.36/1 μm against RTS noise) S1 (T gate L/W=0.36/2 μm against RTS noise)

• Results :

- * Charge collected in seed pixel \simeq 550 e $^-$
- * Detection efficiency of S1 & S2 \gtrsim 99.5% while Fake rate $\leq O(10^{-5})$ for Discrimination Thresholds in range $\sim 5N \rightarrow > 10N$
- Mitigation of Fake Hits due to RTS noise fluctuations confirmed
- * A few 10^{-3} residual inefficiency may come from BT-chip association missmatches and non-optimised cluster algorithme

Spatial Resolution

- Beam test (analog) data used to simulate binary charge encoding :
 - * Apply common SNR cut on all pixels using <N>
 - \hookrightarrow simulate effect of final sensor discriminators
 - * Evaluate single point resolution (charge sharing) and detection efficiency vs *discriminator threshold* for 20x20; 22x33; 20x40; 22x66 μm^2 pixels

• Comparison of 0.18 μm technology (> 1 $k\Omega \cdot cm$) with 0.35 μm technology (\lesssim 1 $k\Omega \cdot cm$)

Process >	0.35 μm		0.18 μm			
Pixel Dim. [μm^2]	18.4×18.4	20.7×20.7	20×20	22×33	20×40	22×66
$\sigma^{bin}_{sp}[\mu m]$	3.2 ± 0.1	3.7 ± 0.1	3.2 ± 0.1	\sim 5	5.4 ± 0.1	\sim 7

CPS fabricated in 2012/13 in 0.18 μm Process

Depleting the sensitive layer

DC coupling

•Negative voltage on the anode of the collecting diode

•Transistors have negative PWELL

AC coupling

- •Anode side grounded
- •Cathode side on +HV

•Vd ≈ 15-20V

Asynchronous Read-Out Architecture : ALPIDE

- Hierarchiral readout : 1 encoder per double column (2¹⁰ pixels)
- 4 inputs basic block repeated to create a larger encoder
- 1 pixel read per clock cycle
- Forward path (address encoder)
- Feed-back path (pixel reset)
- Asynchronous (combinatorial) logic
- Clock only to periphery, synchronous select only to hit pixels

Asynchronous Read-Out Architecture : ALPIDE Beam Tests

- Beam tests at CERN-PS :
- \hookrightarrow Detection performance versus discri. threshold
 - Detection efficiency and noisy pixel rate ("fakes")
 - Sensitivity of detection efficiency to sensing node geometry and back-bias voltage (-3V)
 - Cluster mutliplicity and spatial resolution (residues)

 \Rightarrow Satisfactory detection efficiency and spatial resolution observed