Recent developments in calorimetry for Linear Collider

Lucia Masetti Johannes Gutenberg University Mainz PRISMA Cluster of Excellence

Terascale Detector Workshop Berlin - March 4th, 2015 PRISMA

Outline

Introduction

- Calorimeter designs for ILC and CLIC
- Recent developments
 - ECAL
 - HCAL
 - Forward

Conclusions

ILC and CLIC

CLIC

Energy: 500 GeV - 3 TeV Luminosity: 5x10³⁴/cm²/s Total footprint: 48 km Polarised electrons Two-beam acceleration

ILC

Energy: 250 GeV - 1 TeV Luminosity: 10³⁴/cm²/s Total footprint: 31 km Polarised beams "Standard" technology

L. Masetti - 04/03/15

Calorimetry for Linear Collider

De

SiD: compact detector with silicon tracking **ILD:** larger detector with silicon+TPC tracking

Concept	ILD	CLIC_ILD	SiD	CLIC_SiD
Tracker	TPC/Silicon	TPC/Silicon	Silicon	Silicon
Solenoid Field (T)	3.5	4	5	5
Solenoid Free Bore (m)	3.3	3.4	2.6	2.7
Solenoid Length (m)	8.0	8.3	6.0	6.5
VTX Inner Radius (mm)	16	31	14	27
ECAL r_{\min} (m)	1.8	1.8	1.3	1.3
ECAL Δr (mm)	172	172	135	135
HCAL Absorber B / E	Fe	W / Fe	Fe	W / Fe
HCAL $\lambda_{\rm I}$	5.5	7.5	4.8	7.5
Overall Height (m)	14.0	14.0	12.0	14.0
Overall Length (m)	13.2	12.8	11.2	12.8

L. Masetti - 04/03/15

5

Calorimetry for Linear Collider

UNIVERSITÄT MAINZ

Calorimetry requirements

Requirement: Jet energy resolution of few %, allowing to separate W and Z decays

Solution: Jet Reconstruction with Particle Flow Algorithm Charged particles in tracker (65% of jet energy) Photons in ECAL (25% of jet energy) Neutral hadrons in HCAL (10% of jet energy)

Design: high-granularity "imaging" calorimeters

Common R&D within the CALICE collaboration

Many German institutes involved: DESY, MPI Munich, Hamburg, Heidelberg, Mainz, Wuppertal

6

UNIVERSITÄT MAINZ

SiECAL

SiD: 13 mm² pixels bump-bonded to read-out chips 20 thin + 10 thick W layers (26 X₀ total)

> ILC: 5x5 mm² pixels 30 W layers (24 X₀ total)

ILC TDR Vol. 4

ScECAL: cheaper option 5x45 mm² scintillator strips with MPPC Sc+Si option under study

T. Suehara, LCWS 14

Calorimetry for Linear Collider

K. Kotera, LCWS 13

7

Absorber: stainless steel (preferred for ILC) or tungsten (preferred for CLIC) Many options for active materials under investigation

AHCAL: 3x3 cm² scintillator tiles with SiPM analog readout

(S)DHCAL: gaseous detectors with 1x1 cm² segmentation Glass RPCs as baseline, GEM and Micromegas also considered digital or semi-digital (3 thresholds) readout

L. Masetti - 04/03/15

8

Calorimetry for Linear Collider

Forward

9

LumiCal

Aim: measure luminosity to better than 10⁻³ Bhabha scattering as reference process

Cylindrical sandwich with tungsten absorber and silicon sensor planes

BeamCal

Aim: bunch-by-bunch luminosity estimate determination of beam parameters 10 MGy radiation hardness required

GaAs or CVD diamonds considered as sensors

R&D within FCAL collaboration German participation: DESY

L. Masetti - 04/03/15

Beancal LHCAL LumiCal HCAL

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Recent developments

SiECAL: results and news

- Analysis of pion testbeam data from 2008
 - Comparison with hadron shower models
- Detector development

Cluster of Excellence

- Silicon sensor studies <u>S. Takada, LCWS 14</u> Temperature and humidity dependence, laser injection
- Readout electronics, mechanical design

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JOHANNES GUTENB UNIVERSITÄT MAINZ

L. Masetti - 04/03/15

Cluster of Excellence

12

ScECAL: design improvements

- Granularity and uniformity
 - Strip width reduced to 0.5 cm, wedge shape with bottom readout
 - Already implemented in prototype currently under test
- Ideal SiPM
 - Rectangular shape, 0.25 mm thin, with many pixels to reduce saturation effects

S. Uozumi, LCWS 14

• In contact with Hamamatsu

SDHCAL: latest results

UNIVERSITÄT MAINZ

AHCAL: latest results

- Many new results from AHCAL testbeams in 2006-2012: 38 layers with different absorbers (Fe or W)
 - Characterisation of prototypes (linearity, resolution)
 - Measurement of particle shower evolution
 - Tests of simulation models for hadronic interactions after validation with electromagnetic processes

AHCAL: shower profile studies

High granularity allows for detailed study of shower profiles

Time structure of showers (T3B)

- T3B: Tungsten Timing Test Beam <u>arXiv:1309.6143</u>
 - Radial strip of 15 scintillator tiles behind HCAL
 - Readout with 1.25 GHz sampling rate over 2.4 μs
- Shower time structure dependence on absorber material (Fe or W), deposited energy and radius

arXiv:1404.6454

AHCAL: testbeams 2014

- EUDET stainless steel absorber structure
- Layers: 3 strip ECAL, 8 small HCAL, 4 big HCAL
- Fully HDMI-based DAQ
- Different types of scintillator tiles and SiPMs Hits with energy > 0
- Scalable channel-wise power supply and distribution,

and Data Aggregator (LDA)

data handling

Zedboard with Mini-LDA Mezzanine

.inear Collider

Wing LDA: central piece + 1 wing

Second testbeam period (Nov-Dec) Pupping with full HDMPDAO

Cluster of Excellence

- (using two mini-LDAs) 2 (possibly 3) weeks at DESY Much more stable, still some instabilities with electronics ander investigation, at DEsaplibration, full dress re
- Combined run with one additional SiEcal layer.

- Weirstytestbergen.period successfully completed on Mon-
- Air stack with 5 big layers. LED, pedestal, electron beam runs. Common run control: important step towards Stable operation with faster DAQ integrated DAQ (Taikan's work)
- 2 periods at CERN SPS (one period with steel, one with tungsten)
- New DAQ component being commissioned:
 - Scalable data aggregator (Wing LDA) designed for one AHCAL sector in ILD geometry

AHCAL: design optimisations

• Tile geometry

- SMD SiPMs convenient for mass production
- Dimple in tiles to accommodate SiPM, different shapes under investigation
- Single tiles and megatile under test
- Simulation studies to optimise tile size

• Absorber

- Simulation studies to optimise material choice, thickness and number of layers
- Mechanical structure
 - Simulation of dynamical seismic stability

L. Masetti - 04/03/15

20

RG ' MAINZ

Temperature dependence

- Temperature measurements from 6 sensors on the board
 - T1 & T2 close to power board
 - 11 measurement points
 - Max. temperature deviation: ~7°C

New Hamamatsu MPPC - Dark count rate

Count the signal above the trigger voltage for a fixed amount of time

Needed time interval of

Gain [ADC]

56

54

52

50

48

100000 253.3

81.22

1000

160

Gain T1

Gain T2

Gain T3 Gain_T4

Gain_T5

Gain_T6

FCAL: sensors and electronics

- Different radiation-hard materials under test (also for LHC upgrade)
 <u>K. Afanaciev, CLIC WS 15</u>
 - Thorough comparison of silicon, GaAs, CVD diamond, sapphire
 - All show degraded performance, but are still usable after O(MGy) irradiation

M.Idzik, CLIC WS 15

- 8-channel CMOS 130 nm chip for LumiCal read-out with front-end and ADC for each channel, data processing and serialisation to be submitted this year
- Intentionally non-linear ADC for BeamCal under study
 - ADC resolution following energy dependence of sampling term
 A. Abusleme, LCWS 14

L. Masetti - 04/03/15

22

22

Calorimetry for Linear Collider

FCAL: testbeam and simulation

Cluster of Excellence

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- General detector designs presented in ILC TDR and CLIC CDR: highly-granular calorimeters for particle flow jet reconstruction to meet jet energy and di-jet mass resolution requirements
- Many options being throughly tested for em, had and forward calorimeters
 - Physical prototypes with different absorbers, active materials and readout have undergone several testbeam campaigns
 - Performance meet requirements
 - Detailed comparison with hadronic interaction models in simulation In general not so good agreement
- Strong involvement of many German institutes

Outlook

- Technological prototypes in preparation
 - Large scale production challenging
 - Mechanical structures and services getting closer to final detector
 - First tests in recent testbeams
- Design optimisation still ongoing
 - Driven by physics performance, but also by technological improvement, cost and mass production requirements
- Convergence towards common system
 - Software and DAQ electronics harmonisation

