Perspectives for a High Granularity Calorimeter for the CMS endcap upgrade

P. Silva (CERN), *on behalf of the CMS HGCal group*

Wednesday, 4th February 2015

8th Terascale Detector Workshop 2015

US: Brown, CMU, Cornell, FIT, FNAL, Iowa, Minnesota, MIT, Rochester, UCSB China: IHEP; Croatia: Split; CERN; France: LLR; Germany (Hamburg); Greece; Athens, Democritos; India: SINP-Calcutta,TIFR; Taiwan: NTU; UK Imperial;

Outline

Experimental prospects at the High-Luminosity LHC High-Granularity Calorimeter for CMS Current performance estimates Conclusions

Experimental prospects

Physics at the HL-LHC 3

• **The HL-LHC will deliver us 3fb-1 of pp collisions per day**

- leveled luminosity : 5×10^{34} cm⁻² s⁻¹ \rightarrow <PU>=140
- **3 ab-1 after 10 years** (2025-2035)
- **• Higgs factory**
	- expect 2-10% uncertainty on Yukawa couplings
	- \cdot \sim 30% on self-couplings
	- test $V_LV_L \rightarrow V_LV_L$ unitarity
- …**but also ultimate precision** (as pp allows it) : B-, top-physics,…
- **• Keep searching for new physics**
	- characterise Run II / III discoveries : dark matter? SUSY? new resonances?
	- push the energy frontier
	- uncover deviations from the SM or in rare processes

Machine schedule

By now detectors are ready for Run II (pixels, electronics, trigger upgrades needed for Run III)

In the next slides will focus on the preparation for the HL-LHC

Experimental prospects

HL-LHC: requirements for the endcap calorimeters

- Use **global event description in the high pileup environment**
	- **good energy resolution** for e.m. and hadron showers same or better than current detectors
	- **enable a powerful and flexible trigger**
	- **• radiation hard**
	- **• high efficiency and good resolution for VBF jets in acceptance** *Tag jets in*

• Calorimeter design driven by physics performance

- high lateral and longitudinal granularity
- small Moliere radius (radiation length) and interaction length
- resolutions consistent with physics goals
- good absolute and relative calibration
- flexibility in creating L1 trigger primitives

Imaging particle flow calorimeter inspired by the ideas developed by the ILC- CLIC communities CMS is investigating the usage of a high granularity calorimeter with $~6.5M$ channels of Si pad detectors. Within CMS, the final decision on the endcap calorimeter technology will only occur end of March.

Why HGC?

Dense, high granular 3D sampling calorimeter provides

- unprecedented topological information and shower tracking capability
- energy resolution well matched to boosted particles and jets in the endcap acceptance

• Exploit this potential for feature extraction and precision calorimetry

- Level-1 trigger and offline reconstruction with Particle Flow
- unfold the effect of non-projective geometry by tracking showers
- used 3D shower development to further improve e/y identification as well has π^{\pm} and neutral reconstruction in jets
- apply pileup subtraction and measure shower energy using dynamic clustering

Conceptual design 8

Calorimeter concept

Electromagnetic calorimeter

- 28 layers of W/Pb/Si
- total 25 X_0 / λ
- 3 sub-sections increasing X_0 $(10x0.64X_0 + 10x0.88 X_0 + 8x1.1X_0)$
- cell size 0.5 - 1 cm² = 4.8M channels

Front hadronic calorimeter

- 12 layers of Brass/Si (0.3λ)
- total 3.6λ
- cell size $1 \text{ cm}^2 = 1.96 \text{ M}$ channels

Backing hadronic calorimeter

- 12 layers Brass/Scintillator (2 segments)
- total 5.5λ

η=3.0

Comparison with the Si tracker 10

Comparison with the Si tracker 11

Si sensors I

- Pulse shape before and after irradiation
	- p-in-n diodes, 600V bias, 50ps IR laser pulse λ =1060nm
- **• After neutron irradiation: shorter pulse and rise time (width < 10ns)**

Si sensors II

Fluence effect on charge collection efficiency

Front-end electronics I

- Input stage: cascode with PMOS input transistor with resistive feedback 2mW @ 1.5V
- Leakage compensation with Trim DAC (negligible contribution to noise)
- Shaper: DC coupled, Sallen-Key low pass filter built with RtR amplifier
	- 3x400µW 2x10pF driving capability
	- peaking time 20ns (15ns after 1^{st} stage four double pulse resolution)

Front-end electronics II

• Full SPICE simulation of the analog performance

- **use time-over-threshold** (ToT) regime to provide low noise (~2k e⁻) and cover full dynamic range
- **potential for ~50ps timing** for cells in the core of showers with E_T>2-3 GeV
- **Dead-time** due to high energy, long ToT cells **from bunches previous to trigger**
- preliminary estimates indicate both **small** fraction of cells (<10-4) and degradation of the resolution
- keep as back-up a low gain design (larger noise, \sim IIk e⁻) without saturation

MIP calibration

- **Full calibration procedure developed:** full acceptance and expected life-time
	- pileup is rich in pions \rightarrow MIP-like deposits in calorimeter (before interaction)
	- tracking in the calorimeter allows for the isolation of clean MIP signals
	- calibration of charge possible with S/N=2
	- low noise cells provide local calibration with S/N>5
	- (same electronics as standard cells, but smaller area: use to study systematics)

Cell inter-calibration and energy resolution

- As a sampling calorimeter resolution is dominated by fluctuations (stochastic term)
- Need to **achieve the smallest possible constant term on e/ɣ resolution**
	- aim to <3% uncertainty on inter-calibration of the charged collected in cells
	- need ~10⁶ events if S/N>3 (~10⁸ events towards the end of lifetime, at high η , when S/N~2)
	- notice that any triggered or recorded event is good for calibration purposes

Silicon sensor module design

- Module design is **robust and suitable for large scale automated assembly**
	- current concept: 6'' wafer 2-sensor backplate
	- full protection of sensor and wire bonds: mechanical stresses within safe limits

Mechanical design

CALICE Technological Prototype

545 mm **Composite part** (15 mm thick)

Si module cooling performance

- Thermally conductive epoxy between chips an PCB, regular epoxy on other adhesive layers
	- maximum sensor temperature: -28.5⁰C
	- thermal gradient across sensor 1.3⁰C
	- maximum temperature on PCB: -0.6⁰C

Integration in CMS

- Total power in cold volume \sim 125 kW (both end-caps) vs 240kW CO₂ total transfer line capacity
- Accommodate feed-through of HGC + 2-fold redundancy in case of $CO₂$ failure (~2k junctions /30⁰ sector)

Front-end readout and trigger system

Initial L1 trigger performance estimates for e/ɣ

23

- Without longitudinal information observe "simple" scaling of rate with luminosity
	- drastic reduction effect from inclusion of shower longitudinal information at L1

The following results are work in progress: no public document from CMS yet available . Sharing these preliminary estimates to stimulate the discussion within the Terascale workshop community.

Baseline e/ɣ performance

e.m. clusters have pointing capabilities

- Position estimate can be fine-tuned by scanning appropriate wo
	- optimisation and resolution is pileup-independent
	- \sim 30% improvement in resolution with respect to linear weighting

H→ɣɣ performance

- Pileup subtraction $+$ tuned calibration $+$ vertex information recovery
	- **• potential to recover PU=0 performance for H→ɣɣ**
- Simulation of realistic pileup conditions with two endcap photons from Higgs decays
	- **resolution of ~1.5% with <PU>=200** (assuming vertex information successfully recovered)

Particle flow and HGCal

- $~\sim$ 6M measurements to be correlated for reconstruction
	- group energy deposits according to shower evolution
	- clustering must follow particles/showers in calorimeter
	- resilience in dense pileup environment required clusters can't grow too much
- Reconcile tracking and calorimeter information
	- tame fluctuations in both calorimeter and tracker measurements
- Started to use the Pandora PFA NIMA 611 (2009) 25-4
	- initially developed CLIC/ILC environments
	- adaptation of algorithm flow for pileup environment
	- initial \sim Ih/event brought down to 10min/event
- Very good out-of-the-box performance estimates with PU
	- first results being analysed, stay tuned!

Conclusions

Conclusions

The HGCal concept as progressed over the past year to a viable conceptual design

- **• Already existing technologies enable production of sufficiently radiation hard components**
	- MIP sensitivity in the presence of pileup with viable in-situ calibration up to 3ab⁻¹ at the HL-LHC
	- Good S/N, fast pulse and timing possibility for sufficiently energetic hits

• Initial physics studies show that tracking shower paths as a function of depth enables

- unfolding the effect of non-projective geometry
- measure the energy of the showers using dynamic clustering
- estimate of localised energy densities to recover from fluctuations
- measure high energy electron/photon shower directions to a few mrad
- Currently studying jet reconstruction performance with the Pandora PF algorithm in 140-200PU very promising results already out of the box, with scope for improvement with further tuning

On track to enable efficient, robust, almost pileup-independent measurements at the HL-LHC

Backup

Calorimeter parameters 36

Charge injection calibration circuit

• Calibration can alternatively be achieved by means of charge injection in the front-end

L1 Trigger performance

- **• Clustering algorithm shared between two layers**
- **Seeding step :** build regions of interest from projective towers including layers 15-18 (~10 seeds/event)
- **Clustering step** : profit from expected transverse shower profile
- **Super-clustering** : corrected energy clusters sent to layer 2 and merged

PU removed layer-by-layer

Energy loss corrections applied