# Perspectives for a High Granularity Calorimeter for the CMS endcap upgrade

P. Silva (CERN), on behalf of the CMS HGCal group

Wednesday, 4th February 2015

8th Terascale Detector Workshop 2015

US: Brown, CMU, Cornell, FIT, FNAL, Iowa, Minnesota, MIT, Rochester, UCSB China: IHEP; Croatia: Split; CERN; France: LLR; Germany (Hamburg); Greece; Athens, Democritos; India: SINP-Calcutta, TIFR; Taiwan: NTU; UK Imperial;

# Outline

Experimental prospects at the High-Luminosity LHC High-Granularity Calorimeter for CMS Current performance estimates Conclusions

#### Experimental prospects

## Physics at the HL-LHC

#### The HL-LHC will deliver us 3fb<sup>-1</sup> of pp collisions per day

- leveled luminosity :  $5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \rightarrow \langle PU \rangle = 140$
- **3** ab<sup>-1</sup> after **10** years (2025-2035)
- Higgs factory
  - expect 2-10% uncertainty on Yukawa couplings
  - ~30% on self-couplings
  - test  $V_L V_L \rightarrow V_L V_L$  unitarity
- ... but also ultimate precision (as pp allows it) : B-, top-physics,...
- Keep searching for new physics
  - characterise Run II / III discoveries : dark matter? SUSY? new resonances?
  - push the energy frontier
  - uncover deviations from the SM or in rare processes



## Machine schedule

By now detectors are ready for Run II (pixels, electronics, trigger upgrades needed for Run III)

#### In the next slides will focus on the preparation for the HL-LHC

#### Experimental prospects

### HL-LHC: requirements for the endcap calorimeters

- Use global event description in the high pileup environment
- good energy resolution for e.m. and hadron showers same or better than current detectors
- enable a powerful and flexible trigger
- radiation hard
- high efficiency and good resolution for VBF jets in acceptance  $\neg$   $\neg$   $\neg$   $\neg$   $\vee$  VBF  $H \rightarrow \tau \tau$

- Calorimeter design driven by physics performance
  - high lateral and longitudinal granularity
  - small Moliere radius (radiation length) and interaction length
  - resolutions consistent with physics goals
  - good absolute and relative calibration
  - flexibility in creating L1 trigger primitives



Imaging particle flow calorimeter inspired by the ideas developed by the ILC- CLIC communities CMS is investigating the usage of a high granularity calorimeter with ~6.5M channels of Si pad detectors. Within CMS, the final decision on the endcap calorimeter technology will only occur end of March.

# Why HGC?

#### Dense, high granular 3D sampling calorimeter provides

- unprecedented topological information and shower tracking capability
- energy resolution well matched to boosted particles and jets in the endcap acceptance

#### Exploit this potential for feature extraction and precision calorimetry

- Level-1 trigger and offline reconstruction with Particle Flow
- unfold the effect of non-projective geometry by tracking showers
- apply pileup subtraction and measure shower energy using dynamic clustering

### **Conceptual design**



## **Calorimeter concept**

#### Electromagnetic calorimeter

- 28 layers of W/Pb/Si
- total 25 X<sub>0</sub> / I $\lambda$
- 3 sub-sections increasing  $X_0$ (10x0.64 $X_0$  + 10x0.88  $X_0$ + 8x1.1 $X_0$ )
- cell size 0.5-1 cm<sup>2</sup> = 4.8M channels

#### Front hadronic calorimeter

- 12 layers of Brass/Si (0.3 $\lambda$ )
- total 3.6**λ**
- cell size  $1 \text{ cm}^2 = 1.96 \text{ M}$  channels

#### Backing hadronic calorimeter

- I 2 layers Brass/Scintillator (2 segments)
- total 5.5**λ**



### η=3.0

1

## **Comparison with the Si tracker**

|                                 | Tracker                                                                 | Calorimeter               |
|---------------------------------|-------------------------------------------------------------------------|---------------------------|
| Material budget                 | light materials wherever possible                                       | dense, with small $R_M$   |
| Services and support structures | care with placement                                                     | must not yield large gaps |
| Support and heat transport      | carbon fiber/ AI-CF                                                     | W, Pb and or Cu           |
| Radiation (main source)         | charge hadrons                                                          | neutrons                  |
| geometry                        | fine strips                                                             | large area pad            |
| Placement                       | precise                                                                 | loose tolerance           |
| Dynamic range                   | small                                                                   | large                     |
| Cooling                         | operate at -30 <sup>0</sup> C (maintained with CO <sub>2</sub> cooling) |                           |
| Radiation levels                | up to 10 <sup>16</sup> 1 MeV neutron equivalent                         |                           |



## **Comparison with the Si tracker**

11

|                                 | Iracker                                                                 | Calorimeter               |  |
|---------------------------------|-------------------------------------------------------------------------|---------------------------|--|
| Material budget                 | light materials wherever possible                                       | dense, with small $R_M$   |  |
| Services and support structures | care with placement                                                     | must not yield large gaps |  |
| Support and heat transport      | carbon fiber/ AI-CF                                                     | W, Pb and or Cu           |  |
| Radiation (main source)         | charge hadrons                                                          | neutrons                  |  |
| geometry                        | fine strips                                                             | large area pad            |  |
| Placement                       | precise                                                                 | loose tolerance           |  |
| Dynamic range                   | small                                                                   | large                     |  |
| Cooling                         | operate at -30 <sup>0</sup> C (maintained with CO <sub>2</sub> cooling) |                           |  |
| Radiation levels                | up to 10 <sup>16</sup> 1 MeV neutron equivalent                         |                           |  |
|                                 |                                                                         |                           |  |



### Si sensors l

•

- Pulse shape before and after irradiation
  - p-in-n diodes, 600V bias, 50ps IR laser pulse  $\lambda$ =1060nm
- After neutron irradiation: shorter pulse and rise time (width < 10ns)



### Si sensors II

• Fluence effect on charge collection efficiency



## **Front-end electronics I**

- Input stage: cascode with PMOS input transistor with resistive feedback 2mW @ 1.5V
- Leakage compensation with Trim DAC (negligible contribution to noise)
- Shaper: DC coupled, Sallen-Key low pass filter built with RtR amplifier ٠
  - $3 \times 400 \mu$ W  $2 \times 10 \mu$ F driving capability •
  - peaking time 20ns (15ns after 1<sup>st</sup> stage four double pulse resolution) •



٠

### Front-end electronics II

Full SPICE simulation of the analog performance

- use time-over-threshold (ToT) regime to provide low noise (~2k e<sup>-</sup>) and cover full dynamic range
- **potential for ~50ps timing** for cells in the core of showers with  $E_T>2-3$  GeV
- **Dead-time** due to high energy, long ToT cells **from bunches previous to trigger**
- preliminary estimates indicate both **small** fraction of cells (<10<sup>-4</sup>) and degradation of the resolution
- keep as back-up a low gain design (larger noise,  $\sim | | k e^{-} \rangle$  without saturation



## **MIP** calibration

- Full calibration procedure developed: full acceptance and expected life-time
  - pileup is rich in pions  $\rightarrow$  MIP-like deposits in calorimeter (before interaction)
  - tracking in the calorimeter allows for the isolation of clean MIP signals
  - calibration of charge possible with S/N=2
  - low noise cells provide local calibration with S/N>5
  - (same electronics as standard cells, but smaller area: use to study systematics)



## Cell inter-calibration and energy resolution

- As a sampling calorimeter resolution is dominated by fluctuations (stochastic term)
- Need to achieve the smallest possible constant term on e/γ resolution
  - aim to <3% uncertainty on inter-calibration of the charged collected in cells
  - need ~10<sup>6</sup> events if S/N>3 (~10<sup>8</sup> events towards the end of lifetime, at high  $\eta$ , when S/N~2)
  - notice that any triggered or recorded event is good for calibration purposes



## Silicon sensor module design

- Module design is robust and suitable for large scale automated assembly
  - current concept: 6" wafer 2-sensor backplate
  - full protection of sensor and wire bonds: mechanical stresses within safe limits



## Mechanical design



CALICE Technological Prototype

545 mn

Composite part (15 mm thick)

## Si module cooling performance



- Thermally conductive epoxy between chips an PCB, regular epoxy on other adhesive layers
  - maximum sensor temperature: -28.5°C
  - thermal gradient across sensor 1.3°C
  - maximum temperature on PCB: -0.6°C



## Integration in CMS

- Total power in cold volume ~125 kW (both end-caps) vs 240kW CO<sub>2</sub> total transfer line capacity
- Accommodate feed-through of HGC + 2-fold redundancy in case of CO<sub>2</sub> failure (~2k junctions /30<sup>0</sup> sector)



## Front-end readout and trigger system



## Initial L1 trigger performance estimates for $e/\gamma$

- Without longitudinal information observe ''simple'' scaling of rate with luminosity
  - drastic reduction effect from inclusion of shower longitudinal information at L1



The following results are work in progress: no public document from CMS yet available . Sharing these preliminary estimates to stimulate the discussion within the Terascale workshop community.

## **Baseline e/y performance**



### e.m. clusters have pointing capabilities

- Position estimate can be fine-tuned by scanning appropriate w<sub>0</sub>
  - optimisation and resolution is pileup-independent
  - ~30% improvement in resolution with respect to linear weighting



## H→yy performance

- Pileup subtraction + tuned calibration + vertex information recovery
  - potential to recover PU=0 performance for  $H \rightarrow \gamma \gamma$
- Simulation of realistic pileup conditions with two endcap photons from Higgs decays
  - resolution of ~1.5% with <PU>=200 (assuming vertex information successfully recovered)











### Particle flow and HGCal

- ~6M measurements to be correlated for reconstruction
  - group energy deposits according to shower evolution
  - clustering must follow particles/showers in calorimeter
  - resilience in dense pileup environment required clusters can't grow too much
- Reconcile tracking and calorimeter information
  - tame fluctuations in both calorimeter and tracker measurements
- Started to use the Pandora PFA <u>NIMA 611 (2009) 25-4</u>
  - initially developed CLIC/ILC environments
  - adaptation of algorithm flow for pileup environment
  - initial ~ I h/event brought down to 10min/event
- Very good out-of-the-box performance estimates with PU
  - first results being analysed, stay tuned!



# Conclusions

## Conclusions

The HGCal concept as progressed over the past year to a viable conceptual design

- Already existing technologies enable production of sufficiently radiation hard components
  - MIP sensitivity in the presence of pileup with viable in-situ calibration up to 3ab<sup>-1</sup> at the HL-LHC
  - Good S/N, fast pulse and timing possibility for sufficiently energetic hits

#### • Initial physics studies show that tracking shower paths as a function of depth enables

- unfolding the effect of non-projective geometry
- measure the energy of the showers using dynamic clustering
- estimate of localised energy densities to recover from fluctuations
- measure high energy electron/photon shower directions to a few mrad
- Currently studying jet reconstruction performance with the Pandora PF algorithm in 140-200PU very promising results already out of the box, with scope for improvement with further tuning

#### On track to enable efficient, robust, almost pileup-independent measurements at the HL-LHC

# Backup

### **Calorimeter parameters**

| Thickness                             | 300 µm                | 200 µm                 | $100\mu m$         |
|---------------------------------------|-----------------------|------------------------|--------------------|
| Maximum n fluence (cm <sup>-2</sup> ) | $6 \times 10^{14}$    | $2.5 \times 10^{15}$   | $1 \times 10^{16}$ |
| Maximum dose (Mrad)                   | 3                     | 20                     | 100                |
| E-HG region                           | $ \eta  < 1.75$       | $1.75 <  \eta  < 2.15$ | $ \eta  > 2.15$    |
| H-HG region                           | $R > 860 \mathrm{mm}$ | $R < 860 \mathrm{mm}$  | —                  |
| Cell size (cm <sup>2</sup> )          | 1.05                  | 1.05                   | 0.53               |
| Cell capacitance (pF)                 | 40                    | 60                     | 60                 |
| S/N after 3000 fb <sup>-1</sup>       | 9.6                   | 4.9                    | 2.4                |
| Si wafer area (m <sup>2</sup> )       | 323                   | 161                    | 117                |

|                                   | E-HG  | H-HG  | Total |
|-----------------------------------|-------|-------|-------|
| Area of silicon (m <sup>2</sup> ) | 395   | 209   | 604   |
| Channels                          | 4.80M | 1.96M | 6.76M |
| Detector modules                  | 14.5k | 7.6k  | 22.1k |
| Weight (one endcap) (tonnes)      | 18    | 81    | 99    |
| Number of Si planes               | 29    | 12    | 41    |

## Charge injection calibration circuit

• Calibration can alternatively be achieved by means of charge injection in the front-end



## LI Trigger performance

- Clustering algorithm shared between two layers
- Seeding step : build regions of interest from projective towers including layers 15-18 (~10 seeds/event)
- **Clustering step** : profit from expected transverse shower profile
  - Super-clustering : corrected energy clusters sent to layer 2 and merged



PU removed layer-by-layer

Energy loss corrections applied