

Overview of the RD53 Collaboration & Status Report

Hans Krüger, Bonn University

8th Terascale Detector Workshop, 2-6 March 2015, Berlin

Outline

- High Luminosity LHC pixel electronics
- RD53 Organization & 65nm technology access & support
- Design strategies for the next generation 65nm pixel chips
- Bonn contributions to / experience in 65nm design

ATLAS Pixel Chip Generations

Generation	Current (FE-I3)	Phase 1 (FE-I4)	Phase 2 (preliminary assumptions)
Hit rate	100 MHz/cm ²	400 MHz/cm ²	1-2 GHz/cm ²
Trigger rate	100 kHz	100 kHz	2 MHz
Readout rate	40 Mb/s	160 Mb/s	~1-3 Gb/s
Radiation tolerance	100 Mrad	200 Mrad	1 Grad
Technology	250 nm	130 nm	65 nm
Pixel size	50×400 µm²	50×250 μm²	50×50 μm²
Chip size	7.5×10.5 mm ²	20×20 mm ²	21.9×18.7 mm ²
Transistors	3.5M	87M	~500M

About RD53

- Established (April 2014) to focus the HL-LHC pixel upgrade efforts (CMS, ATLAS) and LCD vertex (CLICPix) using 65nm CMOS technology
- http://rd53.web.cern.ch

H. Krüger, Bonn University, 8th Terascale Detector Workshop, Berlin, 2-6 March 2015

About RD53

- 21 Institutes: Bari, Bergamo-Pavia, Bonn, CERN, CPPM, Fermilab, LBNL, LPNHE Paris, Milano, NIKHEF, New Mexico, Padova, Perugia, Pisa, Prague IP/FNSPE-CTU, PSI, RAL, Torino, UC Santa Cruz, LAL/OMEGA, Seville
- ~100 collaborators
- Spokes persons:
 - Maurice Garcia-Sciveres, LBNL (ATLAS),
 - Jorgen Christiansen, CERN (CMS)
- Institute Board
 - IB chair: Lino Demaria, Torino
 - Regular IB meetings
 - MOU signed
- Collaboration meetings
 - Spring 2014: April 10 & 11 at CERN
 - Fall 2014: October 16 & 17 at RAL
 - Spring 2015: April 23 & 24 at CERN

CERN Support for TSMC Technologies

- Development of a 65nm (and 130nm) Mixed Signal Design Kit
- Development of IP blocks
- Radiation tolerance characterization (up to 200MRad)
- Established a commercial contract for foundry services
- Negotiated a Non Disclosure Agreement with special provisions for HEP collaborative model
- Contacts at CERN for foundry services
 - Generic e-mail address: <u>foundry.services@cern.ch</u>
 - Gert Olesen Gert.Olesen@cern.ch
 - Coordinates all logistics procedures (administrative, financial, silicon handling) of the foundry services operations
 - Kostas Kloukinas Kostas.Kloukinas@cern.ch
 - Organizational matters

- CERN has signed a commercial contract with IMEC for the TSMC 65nm & 130nm processes
 - Fixed prices
 - All purchase orders will pass via CERN
 - Design data will be submitted directly to IMEC
- Foundry Services schedules
 - MPWs announced schedules by IMEC and foundry
 - CyberShuttle
 - Compatible with all metal stacks
 - mini@sic
 - metal stack: 6-thin, 1-thick, 1-UTM
 - Based on demand
 - Additional runs for HEP could be organized

Services provided by Europractice (IMEC)

- Distribute the CERN Mixed Signal Design Kit Design kit and the Workflows
- Provide maintenance and technical support in collaboration with Cadence VCAD design services
- Project specific design services and technical support can be made available by IMEC or VCAD at a cost.
- CERN can not engage in a manpower demanding, long term maintenance & support program as in the past

RD53 Challenges

- Design for 1 Grad radiation tolerance
 - technology qualification
 - design guidelines
- Establish design and verification methodology adequate for >10⁸ transistor mixed signal chip
- Analog design
 - Low power, low threshold operation, high in-time efficiency
- Digital design
 - Cope with 2.10⁹ hits/sec/cm²
 - High bandwidth readout (2-4 Gbps per chip)
- Establish and maintain a shared IP library for full-custom function blocks for ease of design re-use
- ➔ RD53 Working groups

RD53 Working Groups

WG	Domain				
WG1	Radiation test/qualification: M. Barbero, CPPM				
Coordinate test and qualification of 65nm for 1Grad TID and10 ¹⁶ neu/cm ² Radiation tests and reports. Transistor simulation models after radiation degradation Expertise on radiation effects in 65nm					
WG2	Top level: (M. Garcia-sciveres, LBNL)				
Design Methodology/tools for large complex pixel chip Integration of analog in large digital design Design and verification methodology for very large chips. Design methodology for low power design/synthesis. Clock distribution and optimization.					
WG3	Simulation/verification framework: T. Hemperek, Bonn				
System Verilog simulation and Verification framework Optimization of global architecture/pixel regions/pixel cells					
WG4	I/O : To be started				
Development of rad hard IO cells (and standard cells if required) Standardized interfaces: Control, Readout, etc.					
WG5 Analog design / analog front-end: V. Re, Bergamo/Pavia					
Define detailed requirements to analog front-end and digitization Evaluate different analog design approaches for very high radiation environment. Develop analog front-ends					
WG6	IP blocks: (J. Christiansen, CERN)				
Definition of required building blocks: RAM, PLL, references , ADC, DAC, power conversion, LDO, , Distribute design work among institutes					

Implementation, test, verification, documentation

- Characterization of the TID and NIEL related effects
- Irradiation campaigns with various test structures and environmental conditions
 - Dose rate and type of radiation
 - Bias conditions
 - Temperature during irradiation and annealing

→ Loss of transconductance after more than ~100 Mrad (threshold shift and offleakage not so severe) in particular for narrow PMOS

- Design recommendations
 - Low temperature helps
 - Annealing is good for NMOS, but PMOS not so much (bias dependent)
 - NMOS: use large L if possible. L>120nm advised
 - PMOS: use large W to avoid loss of g_m (when large W, avoid fingered layout).
- Ongoing: Modeling of the radiation induced effects for use in circuit simulations

WG2 – Top Level Design

- Most FE-chip developments so far based on an 'analog design flow'
 - Analog (full custom) design blocks dominate plus a few synthesized digital blocks
 - Not very efficient for complex & large chips (integration & verification)
- The complexity of next generation pixel chips require a different approach
 - Use of a 'digital design flow' with full custom design blocks added

Top Level Design – Matrix Architecture

WG3 – Simulation Test Bench

- Convener: T. Hemperek, Bonn
- Verification framework customized for complex pixel chips based on system Verilog and UVM (industry standard for ASIC design and verification)
- High abstraction level down to detailed gate/transistor level
- Benchmarked using FEI4 design
- Internal generation of appropriate hit patterns
- Integration with ROOT to import hits from detector simulations and for analyzing results.

WG4 - I/O

- Definition of command input and data output protocols.
- Implementation of single serial input encoding clock and command
- High speed drivers. Need to be simulated with candidate low mass cable designs (interaction with experiments on cable R&D)
- Efforts are closely related to the design of the drivers, serializer, and clock data recovery block

Example of IP Development for I/O

- FE interface
 - One up-link, combining CLK and CMD \rightarrow needs clock/data recovery (CDR)
 - One (or more) high speed (> 2Gbps) down-links \rightarrow serializer (SER) and Gbit driver (TX)
 - Bit rates and encoding schemes currently under discussion

WG5 – Analog Design

- Evaluation, design and test of appropriate low power analog pixel Front-Ends
- Develop analog front-end specifications
 - capacitance, threshold, charge resolution, noise, dead time, power...
- Sensor options
 - Planar, 3D sensors, Active CMOS
- Alternative architectures/implementations to be compared, designed and tested by different groups
 - TOT, ADC, Synchronous, Asynchronous, Threshold adjust, Auto zeroing, etc.
- Design / prototyping of FE's ongoing

WG6 – IP Blocks

- Ambitious plan to design and maintain a broad variety of full custom blocks in a common IP/design repository
 - Definition of specifications
 - Integration into the design flow
- Time line
 - Prototyping/test of IP blocks: 2014/2015
 - IP blocks ready 2015/2016
- Bonn Contributions
 - Organization of PLL / CDR / SER development
 - Participation in the Gbit link driver design
 - Linear regulator / shunt regulator (M. Karagounis, former Bonn group member now FH Hamm-Lipstadt)
 - Various digital IP (soft cores)

Country	DE	~ ~	FR	NL		- > -	IT -		1		US	FR	UK	US	CZ
Crown	June		5 0	ΞË		Pav	Milan	_ado	Pis:	Tori	BN	Ę "	RAI	Cru	Prag
ANALOC: Coordination with analog WC				-			-	-			_	-		0, <	Ŭ
ANALOG: Coordination with analog WG						((=)					
Pedietien eeneer			0			(P)				(P)					(P)
			(P)			(P)				0?					(P)
Hv leakage current sensor.			0							(P)					(P)
Band gap reference		0	0	(P)		0							(P)		
Self-biased Rail to Rail analog buffer	(P)		(P)	(P)									0		(P)
MIXED															
8 – 12 bit biasing DAC		(P)			0										(P)
10 - 12 bit slow ADC for monitoring		0	0		0										
PLL for clock multiplication	0	(P)		(P)				(P)	(P)	(P)			(P)	(P)	
High speed serializer (~Gbit/s)	0	(P)		(P)					(P)				(P)	(P)	
(Voltage controlled Oscillator)				(P)				0	(P)	(P)					
Clock recovery and jiter filter	0	(P)							(P)				(P)		
Programmable delay	0	(P)							(P)				(P)		
DIGITAL															
SRAM for pixel region	(P)	(P)					0							(P)	
SRAM/FIFO for EOC.	(P)	(P)					(P)		(P)					0	
EPROM/EFUSE	(P)	0	(P)												
DICE storage cell / config reg	(P)		0				(P)		(P)					(P)	
LP Clock driver/receiver	(P)					0							(P)		
(Dedicated rad hard digital library)	(P)	(P)	(P)						0			(P)	(P)		
(compact mini digital library for pixels)	(P)	(P)	(P)						0			(P)	(P)		
IO: Coordination with IO WG															
Basic IO cells for radiation	(P)	0													
Low speed SLVS driver (<100MHz)	(P)	(P)				0			(P)	(P)					(P)
High speed SLVS driver (~1Gbits/s)	(P)	(P)				0			(P)	(P)					(P)
SLVS receiver	(P)	(P)				0			(P)						(P)
1Gbits/s drv/rec cable equalizer	(•)	(.)							(.)						(.)
C4 and wire bond pads	(P)	0													
(IO pad for TSV)	0		(P)									(P)		(P)	
Analog Rail to Rail output buffer	0		(P)									(P)		(P)	
Analog input pad	0											(P)			
POWER															
LDO(s)		(P)	(P)	0					(P)	(P)			(P)		
Switched capacitor DC/DC		(P)									0				(P)
Shunt regulator for serial powering		()		0											
Power-on reset															
Power pads with appropriate ESD	(P)	0													
SOFT IP: Coordination with IO WG	. /														
Control and command interface		(P)			(P)				0			(P)			
Readout interface (E-link ?)									0						

Bonn 65nm CMOS Design Activities previous to RD53

- Data handling processor (DHP) for the Belle 2 DEPFET pixel vertex detector
 - Manly digital with full-custom blocks
 - PLL (1.6 GHz)
 - High speed serial link (1.6 Gbps)
 - LVDS IO
- IP blocks for future pixel chips
 - Low power analog front-end (CSA + discr.)
 - Low power, small area ADC
 - SEU test structures
- Chip submissions
 - DHPT 0.1, four chiplets, Oct. 2011
 - DHPT 0.2, four chiplets, June 2012
 - DHPT 1.0, Oct. 2013
 - 14 mm² MPW
 - C4 bumps

DHPT 0.2

DHPT 0.2 – Pixel Analog FE Measurements

CSA	Comparator	⟨ <i>ENC</i> ⟩ [e⁻]	Ρ [μW]			
Continuoua	Continuous	144	10.4			
Continuous	Dynamic	183	10.6			
Quitched	Continuous	113	14.6			
Switched	Dynamic	157	14.8			

DHPT 0.1 – PLL & High Speed Link Driver

- 1.6 GHz PLL, 80 MHz input clock
- Pseudo random bit sequence generator (8 bit LFSR) for bit error rate tests
- Current mode logic (CML) driver
- Programmable pre-emphasis (first order FIR filter)
 - Needed to compensate the high frequency attenuation of the data cable

Gbit Link Test Setup

DHPT 0.1 – Signal Integrity Analysis

- 1.6 Gbps, 8bit LFSR sequence
- 10m Infiniband cable (LEONI, AWG 26)

Preemphasis off

Preemphasis on (600ps, max. I_{boost})

Conclusion & Outlook

- The development effort needed for ATLAS/CMS HL-LHC pixel chips is based on the RD53 collaboration, established to focus on 65nm CMOS technology
- Challenging goals (technical, and collaborative)
- Design effort in full swing
 - Various MPW chips for IP prototyping (in preparation / done)
 - Small analog-only matrices have been submitted end of last year
 - First medium size (1 x 1 cm²) full matrix submission planned for May 2015
- General timeline
 - Radiation hardness conclusions early 2015
 - Analog, I/O and IP prototype tests chips now to end of 2015 (multiple submissions)
 - Full or half-size prototype(s) 2016 (wafer run order in CERN frame contract process)
 - Test, design iteration and refinements 2017
 - Hand over to ATLAS and CMS for final chip designs 2018

- Clock Data Recovery (CDR) recovering clock signal from randomized data $\underbrace{0 \ 1 \ 0 \ 0 \ 1}_{DATA} \rightarrow CDR \xrightarrow{DATA} \underbrace{0 \ 1 \ 0 \ 0 \ 1}_{CLK}$
- Implementation: Phase-locked-loop with special phase detector (gated)

• Prototype RD53 CDR/SER submission foreseen for May 2015

IP Block: PLL/CDR

Parameter	Value				
Size	?				
Supply voltage	1.08-1.32V				
Power	?				
Temperature range	-20C +50C				
Input Data/Clock Frequency	200 MHz – 400 MHz				
VCO Frequency	1.6 GHz (or 3.2 GHz, tbd.)				
Max variation (1Grad, 10 ¹⁶ n/cm ²)	??? (define max. SEU cross section)?				
Max jitter	tbd.				
Metal layers used	3? (tbd.)				
Capacitor (& other special options)	tbd.				
Active element used	tbd.				
Status (19.1.2015)	Schematic ready				
Designer (Email)	Piotr Rymaszewski rymaszewski@physik.uni-bonn.de				

I/O signals	Function			
RX_DATA (input)	Serial input data			
DATA_OUT (output)	Resynchronized input data			
BIT_CLK (output)	Recovered input clock			
TX_CLK (output)	High speed clock for SER			
LOCKED (output)	PLL status			

Block Diagram

Schedule					
Status	Date				
Initial spec	Q2 2014				
Schematic	Q3 2014				
Layout	Q4 2014/Q1 2015				
Final spec	Q1 2015				
Prototype 1 submission	Q1 2015				
Prototype characterized	Q3 2015				
Prototype 2 submission	Q4 2015				
Prototype 2 characterized	Q1 2016				
Full IP available	Q1 2016				

DHPT 0.1

- High Speed Link
 - 1.6 GHz PLL
 - Differential 1.6 Gbit CML driver with programmable pre-emphasis
 - Low jitter (~ 80ps)
- Analog Front-end (4 types)
 - 2 charge sensitive amplifiers
 - 2 comparators (static & dynamic)
 - $\sim 36 \times 25 \ \mu m^2$
- Memory Test
 - Different memory types, compiled SRAM & custom register file
 - JTAG interface
- Analog Periphery Blocks (University of Barcelona)
 - 8 bit current steering DAC
 - Temperature independent current reference

DHPT 0.2

- Pixel Array
 - Array of 32 pixels
 - Four flavors (as in DHPT 0.1)
 - Small size (~25×60 µm²)
- ADC (8 bit, 10MS/s)
 - Low area (30×70 μm²)
 - Low power (40 µW @ 10 MS/s)
 - Asynchronous
 - Good linearity (INL, DNL < 0.4 LSB)
- LVDS TX/RX
 - Rail-to-Rail 1.8/2.5V LVDS Receiver
 - 1.8/2.5V LVDS Transmitter
- Temperature Sensor (University of Barcelona)

1.92 mm

DHPT 0.1 – Low Power ADC

- 8bit ADC
 - 10 Msps
 - Charge redistribution
- Asynchronous operation \rightarrow low power
 - No clock distribution needed
 - Sample signal triggers digitization sequence
- Serial LVDS data out

Layouts

PLL

H. Krüger, Bonn University, 8th Terascale Detector Workshop, Berlin, 2-6 March 2015

T. Kishishita

DHPT 0.1 – ADC Layout

- ADC area dominated by DAC
- Switched capacitor DAC layout critical for DNL performance
- 8 bit \rightarrow 7 bit: half size

120 um

D

A

С

Asynchronous ADC Measurements

Single Ended Mode

Differential Mode

- Measured at 10 MHz sample rate
- Power consumption: ~40uW
- Works up to 12.5 Msps

General purpose IP Blocks in 65nm

- Distributed by CERN
 - SRAM compiler (access fee apply)
 - I/O pad library
 - Monitoring ADC
 - Bandgaps
 - Rad-hard to 200Mrad according to specifications
 - Deliverables
 - Schematic (OA)
 - Layout (OA)
 - Abstract (OA)
 - .lib (Liberty) capacitance limits and timing if applicable
 - Verilog / Verilog-AMS models
 - Datasheet

sandro.bonacini@cern.ch