

HV-MAPS-Track Triggers

A.Schöning University Heidelberg

8. Terascale Detector Workshop Berlin 2.-6.3.2015

Track Trigger Motivation for LHC

 Improve lepton/hadron separation

(in combination with calorimeters and muon detectors)

Pileup suppression

 e.g. 2-lepton signature
 (requires vertex reconstruction)

Track Trigger for Future Colliders

Tracks (trigger) can resolve highly collimated jets

Track Trigger Concepts @ ATLAS+CMS

ATLAS FTK (Fast TracKer)

- ATLAS L1TT: Region of Interest
- ATLAS L1TT: Self Seeded
- CMS L1 Track Trigger (Self Seeded)

Run2+3

ATLAS Fast Tracker (FTK) Run2+3

ATLAS FTK (Fast Tracker)

- fast HW track processor for Level2
- full event
- pixel+strip sensors

- Inearised track fits in DSPs
- latency ~50 µs @ 100 kHz

Main Disadvantages

- based on previous trigger Level1 trigger decision
- concept as such too slow for L1 trigger applications
- not designed for HL-LHC

ATLAS L1TT Region of Interest

ATLAS Level 1 Track Trigger (L1TT) baseline design

- fast HW track processor for Level1
- only region of interest
- pixel+strip sensors
- highly parallel track linking (AMchip2020)
- Iatency ~10 µs @ 500-1000 MHz
- need extra L0 trigger (Calo+Muon) to reduce event rate

Main Disadvantages

- huge pattern banks required!
- need extra L0 trigger (calo+muon) to reduce event rate
- only partial track reconstruction of the event

region

Track Trigger Bandwidth Problem

High-Luminosity-LHC: L ~ <10³⁵ cm⁻²s⁻¹

just 3 layers of short strips (25 million channels) ____ • 900 Tbit/s

ATLAS + CMS Impossible to get all hit data out (for every bunch crossing) with nowadays readout technologies!

solution → filter hits

Frontend Hit Filtering

On-detector rate reduction by hit filtering:

remove

exploiting beamline constraint

stacked layers (doublets):

can also exploit cluster size

Local Coincidence (Stub Reco)

ATLAS

remove stereo angle in double strips (not baseline design)

ABCn

Challenges of Self-Seeded Concepts

ATLAS L1TT Self-Seeded

- cluster + coincidence filtering
- all 5 strip layers w/o stereo required for robust trigger
- track p_T>10-20 GeV

CMS L1 Track Trigger (Self-Seeded)

- design with strip-strip (2S) and pixel-strip (PS) modules
- optical link on every single module
- high bandwidth!

General concerns (ATLAS+CMS)

- Iosses between modules
- Ioss due to (cluster) filtering
- bandwidth and power
- no z-vertex pointing (ATLAS strips)

"Ideal" Tracking Detector Concept

CMS pixel tracker

Track Parameters from Space Points

basic assumption: solenoidal magnetic field

• from three planes \rightarrow 9 parameters

• helix and crossings described by 8 parameters

 \rightarrow over-constrained fit

Optimal Design for 3D Tracking

A: equidistant pixel layers

B: doublet pixel layers

Track reconstruction @ HL-LHC: which design has fewer track ambiguities?

Track Ambiguities for Pixel Tracker

Optimal Design for 3D Tracking

A: doublet layers

B: triplet layers

faster reconstruction?

Pixel Tracker Reconstruction Speed

Track Extrapolation Uncertainty

Transverse plane:

Longitudinal plane:

V

z-extrapolation is much more precise! → use pixel not strips for fast linking

First Summary

Would like to have a Pixel Track Trigger for several reasons:

- full 3D-tracking with only 3 layers possible
- high intrinsic redundancy and robustness
- track linking is fast and simple \rightarrow trigger
- pixels allow to reconstruct event vertex with sub-mm precision

Pixel only Track Trigger?

Semiconductor Pixel Detectors

Advantages

- fast signals
- small deadtime
- low occupancy (rate)
- high resolution (precision)
- 3D tracking (fast reconstruction)
- no ambiguities (less complexity)

Backdraws

- power consumption
- many channels
- high entropy (information)
- small structures

- \rightarrow good for triggering

- \rightarrow challenge for system design
- \rightarrow challenge for readout
- \rightarrow challenge for trigger processing
- \rightarrow scalability

ATLAS Hybrid Pixel Module

Detector System on Chip?

HV-MAPS Technology Ivan Perić, NIMA 582 (2007) 876

MuPix prototype

N-well E field P-substrate Particle

- no composite no interconnects
- simplified design (ASIC)
- sparsified readout (zero suppressed)
- fast signals
- Iow noise
- thin sensor!
- LVDS link

50 µm

System on a chip: sensor + readout

MAPS = Monolithic Active Pixel Sensor

Mu3e Experiment at PSI

beam with 10⁹ muons/s

- muon stopping target
- 4-layer HV-MAPS tracker with 50µm thin sensors
- time-of-flight system
- magnet B = 1 T
- online filter farm

Status:

- R&D finalisation 2015
- construction in 2015-17
- commissioning in 2017

Aim: BR($\mu^+ \rightarrow e^+ e^+ e^-$) ~ 10⁻¹⁶ Search for $\mu^+ \rightarrow e^+ e^+ e^-$ (signal) p(e⁺) < 53 MeV Background: $\mu^+ \rightarrow e^+ v v$ 28 MeV/c ~ 1 muon decay / ns

Fast and very thin detector required \rightarrow MuPix sensor

Mu3e-Tracker Construction

Ultra-thin detector mock-up:

- sandwich of 25 µm Kapton[®]
- 50 µm glass (instead of Si)

sandwich design:

- HV-MAPS
- Kapton Frame -

He-gas cooling (<400mW/cm²) $\rightarrow X/X_0 \sim 0.1\%$ per layer

50 µm silicon wafer

CAD drawing

Mupix 7 Prototype Chip

Mupix7 parameters:

- ~ 3 x 3 mm²
- ~1200 pixels
- pixel size ~ 80 x 100 µm² (huge!)

Mupix7 features:

- tune DACs for every pixel
- double stage amplifier (every pixel)
- zero suppression + digital readout
- timestamp generation up to O(100) MHz \rightarrow O(10) ns
- 1.2 GHz PLL
- integrated 1.2 (2.4) Gbit/s link
- about 40 pads (wire bonding)

being currently tested!

What now follows sounds crazy

but it is not!

HV-MAPS Triplet Trigger Example

~ $6 \cdot 10^6$ wire bonds to HV-MAPS (c.t. ~ $8 \cdot 10^6$ wire bonds to 10 cm strips)

(BTW: 40 x 40 hybrid pixel would require $3 \cdot 10^{10}$ bump bonds)

HV-MAPS Triplet Modules for LHC

Basic design considerations

- modules from 2 x 2 cm² reticles
- glued on kapton flexprints (LVDS RO)
- pixel size 40x40 µm²
- power goal 100 mW/cm²
- X/X₀ ~0.1% per layer w/o support+cooling
- module size e.g. 100-150 x 4 cm²

First Simulation Results

p_{τ} resolution for 1 GeV muons

Relative Transversal Momentum Resolution (bml constraint & karimaeki fit)

precise (trigger) tracking with just 3 pixel layers!

Plans for Future HV-MAPS Research

HV-MAPS

- small pixel sizes over larges scales feasible
- highly integrated design (much less complex than strip hybrids)
- Iow power but power is an issue
- very low material budget (X= 0.1% X₀ for Mu3e)
- Iow noise and fast readout \rightarrow trigger
- relatively radiation hard but more tests are required
- standard commercial process + relatively cheap technology
- new technology and not much experience

Planning to build HV-MAPS hardware demonstrator for LHC Heidelberg + Karlsruhe (KIT).

New collaborators highly welcome!

Summary

- HV-MAPS Track Trigger seems technically possible!
- Pixel Trigger in Endcaps?
- Pixel only Detector?

BACKUP

High Voltage MAPS

Ivan Perić, NIMA 582 (2007) 876

		Metal 4
NMOS P	MOS	
P-well Low Voltag	e :: = = = = = = = = = = = = = = = = = =	
Deep N-well	+ + + + + +	
+ + + + + + + + + + + + + + + + + + + +	++ ++ 	
++++++++ Depleted $+++++++$ 9 µm		
++++++++++++++++++++++++++++++++++++		¥_
		 I I
IIIII Depleted IIIII IIIII		ΞΞ
*****		P
P Substrate		

- Floating structure
- MOSFETS in well
- 100% fill factor
- high depletion at 50 V

HV-MAPS Pixel Design

Fast circuit and thin sensor!

DAC = digital to analog converter \rightarrow adjustment of threshold

Mupix Chip

MuPix Time Resolution

MuPix Time Resolution

→ timewalk correction possible

MuPix Pixel Efficiency

Efficiency > 99.5%

Simulation Results

- muons with p=1 GeV/c
- X/X₀=1% per layer
- G4 simulation
- Iayer spacing 2cm
- radius ~1m
- pixel size 80 x 80 mu²

