Helmholtz-Alliance

8th Detector Workshop of the Terascale Alliance 2015 Berlin, 06.03.2015

CMOS Pixels Overview (for LHC – pp – Experiments)

Norbert Wermes Universität Bonn

N. Wermes, HHA-2015, Berlin

Demands on Pixels at the HL-LHC

MAPS

CMOS Pixels

Some prototype results

Today's running LHC detectors

all based on

• amplification by a dedicated R/O chip

• 1-1 cell correspondence

N. Wermes, HHA-2015, Berlin

1st Upgrade ...

IBL = ATLAS' insertable B-Layer

- move closer to IP (5.5 cm -> 3.5 cm)
- higher rate
- higher radiation levels (~1/r²)
 - FE-I4: larger chip smaller feature size higher rate capability

~0.6 × 1.1 cm²

250 nm technology pixel size 400 \times 50 μ m² 3.5 M transistors

130 nm technology pixel size 250 × 50 μm² 70 M transistors installed in ATLAS: May 2014

 $\sim 2 \times 5 \text{ cm}^2$

ATLAS Pixel 16-chip module $\sim 2 \times 4 \text{ cm}^2$

IBL: 2-chip module 4

N. Wermes, HHA-2015, Berlin

The typical LHC case (... here ATLAS)

Signal of a min. ionizing particle = 19500 e⁻ => <10000 e⁻ after irrad.

- Discriminator thresholds = 3500 e, ~40 e spread, ~170 e noise
- 99.8% data taking efficiency
- 95.9% of detector is operational
- \Box ca. 10 µm x 100 µm resolution (track angle dependent)
- □ 12% dE/dx resolution

- complex signal processing already in pixel cells possible
 - zero suppression
 - temporary storage of hits during L1 latency
- \Box radiation hardness to >10¹⁵ n_{eq}/cm²
- □ high rate capability (~MHz/mm²)
- \Box spatial resolution ~ 10 15 μ m

CON

... but also

- □ relatively large material budget: **~3% X**₀ per layer (1% X₀ @ ALICE)
 - sensor + chip + flex kapton + passive components
 - support, cooling (-10°C operation), services
- complex and laborious module production
 - bump-bonding / flip-chip
 - many production steps
 - expensive

CMOS Pixels

Use commercial CMOS technology mature (world market)

cheap in comparison

Monolithic (i.e. one sensor/chip entity)

- avoids hybridization
- wafer scale processes
- large modules possible (employ stitching over reticules)

Small pixels

o (25 x 25 μm²)

BUT

Industry does not care about particle detection

- they use cheap low resistive substrate Si (not depletable) ... Q-coll by diffusion (slow)
- some (CMOS camera) technology have relatively thick epitaxial layer (~15 μm)
- ⇒ try to exploit special technology features to make detectors multiple wells, some (thin) depletion layer, backside contacts => optimize Q-coll.

Rate and radiation challenges at the innermost pixel layers

		Hybrid Pixels			
	BX time	Particle Rate	NII:L Fluence	lon. Dose	
	ns	kHz/mm²	n _{e1} /cm² per l fetime*	Mrad per lifetime*	
		k			
LHC (10 ³⁴ cm ⁻² s ⁻¹)	25	1000	2×10 ¹⁵	79	
HL-LHC $(10^{35} \text{ cm}^2 \text{s}^{-1})$	25	10000	2×10 ¹⁶	> 500	
THC Heavy lons (6×10 ²⁷ cm ⁻² s ⁻¹)	20.000	10	>1013	0.7	
RHIC (8×10 ²⁷ cm ⁻² s ⁻¹)	110	3.8	few 10 ¹²	0.2	
SuperKEKB (10 ³⁵ cm ⁻² s ⁻¹)	2	400	~3 x 10 ¹²	10	
ILC (10 ³⁴ cm ⁻² s ⁻¹)	350	250	1012	0.4	
1 Monolithic Pixels	ower rates ower radiations smaller pixels ess material petter resolu	on MAPS: STAR and f ALICE	le II @RHIC I future I E ITS 0	assumed lifetimes: .HC, HL-LHC: 7 years LC: 10 years others: 5 years	

N. Wermes, HHA-2015, Berlin

8

Rate and radiation challenges at outer/interm. pixel layers

focus in this talk (CMOS pixels for LHC-pp)

	BX	time	Particle Rate	NIEL Fluence	lon. Dose
	r	IS	kHz/mm²	n _{eq} /cm² per lifetime*	Mrad per lifetime*
LHC (10 ³⁴ cm ⁻² s ⁻¹)	2	25	1000	2×10 ¹⁵	79
HL-LHC $(10^{35} \text{ cm}^2 \text{s}^{-1})$	2	25	10000	2×10 ¹⁶	> 500
tHC Heavy lons (6×10 ²⁷ cm ⁻² s ⁻¹	20.	000	10	>1013	0.7
RHIC (8×10 ²⁷ cm ⁻² s ⁻¹)	1	10	3.8	few 10 ¹²	0.2
SuperKEKB (10 ³⁵ cm ⁻² s ⁻¹))	2	400	~3 x 10 ¹²	10
ILC (10 ³⁴ cm ⁻² s ⁻¹)	3	50	250	1012	0.4
T Monolithic Pixels N. Wermes, HHA-2015, Berlin	$0^{27} \text{ cm}^2 \text{ s}^{-1}$ 20.00010> 10^{13} 0.71)1103.8few 10^{12} 0.2 $n^2 \text{s}^{-1}$ 2400 $^{\sim}3 \times 10^{12}$ 10 $n^2 \text{s}^{-1}$ 2400 $^{\sim}3 \times 10^{12}$ 10350250 10^{12} 0.4DEPFET: Belle II lower radiation smaller pixels less material better resolutionDEPFET: Belle II MAPS: STAR@RHIC and future ALICE ITSadd future ALICE ITS				

A classification ... from HYBRID to new challenges

- standard HYBRID pixels
 - various sensors: planar-Si, 3D-Si, diamond
 - mixed signal R/O chip (FE-I3, FE-I4, ROC ...)

- **3D** integration of CMOS Tiers
 - separate analog / digital / opto
 - FE-TC4 (Tezzaron/Chartered)

A classification ... from HYBRID to new challenges

- standard HYBRID pixels
 - various sensors: planar-Si, 3D-Si, diamond
 - mixed signal R/O chip (FE-I3, FE-I4, ROC ...)

- Monolithic Active Pixel Sensors
 - MAPS using CMOS with Q-collection in epilayer (usually by <u>diffusion</u> → recent advances)
 - depleted DMAPS using HR substrate or
 HV process to create depletion region:

Diode + Amp + Digital

 $d \sim \sqrt{\rho \cdot V}$

- CMOS on SOI

A classification ... from HYBRID to new challenges

• (D)MAPS

Diode + Amp + Digital

~100M trans.

- HYBRID pixels using "active" sensors
 - 8" HV or HR sensor w/ few transistors
 - (voltage) signal coupled to R/O-chip

- CMOS ACTIVE Sensors + digital R/O chip
 - HR or HV CMOS sensor with CSA+disc
 - dedicated digital R/O chip

CMOS Sensors (MAPS) CMOS pixels with epitaxial layer as sensor

3Transistor R/O

rolling shutter mode addressing

B. Dierickx, D. Meynants, G. Scheffer, SPIE 3410:68-76 (1998) R. Turchetta, ..., M. Winter et al, NIM A458 (2001) 677-689

- + 'standard CMOS' process
- limited to NMOS usage, however
- + low power
- small and incomplete signal collection
- slow charge collection (diffusion) and R/O
- radiation soft

developed for more than 10 years \Rightarrow goals:

better/faster Q-collection radiation tolerance

- \Rightarrow TID o(~Mrad), NIEL o(10¹³/cm²)
- \Rightarrow not suited for LHC pp

Improvements

 a large deep n-well for charge collection containing NMOS and PMOS transistors

L. Ratti, V. Re, G. Rizzo et al., e.g eConf C0604032 (2006), S. 0008

 using *"triple/quadruple" well* processes to shield the PMOS transistor wells

J.P. Crooks, ..., R. Turchetta et al. IEEE TNS 2007 & Sensors (2008), ISSN 1424-8820

MAPS Pixel Detector Projects

in operation since 2014

under development target: 2018

current baseline

see talk by Marc Winter

□ driven by the need/hope for

- low cost large area detectors ... more pixel layers in trackers commercial
- less material ... ? ... not clear
- less power ... ? ... not clear
- □ facing the challenges of HL-LHC

<u>inner layers (<6 cm)</u>

- high rates 10 MHz/mm²
- radiation > 1 Grad TID 2 x $10^{16} n_{eq}/cm^2$

outer layers (>25 cm) 1 MHz/mm² 50 Mrad 10¹⁵ n_{eg}/cm²

note: at > $10^{15} n_{eq}/cm^2$ trapping becomes the dominant radiation effect

goal: some (40 – 80 μ m) depletion depth for ...

- fast charge collection (< 25ns "in-time" efficient)
- a reasonably large signal ~4000 e-
- not too large a travel distance to avoid trapping (rad hardness)

Detector:	Silicon area	Channels
	[m ²]	[10 ⁶]
Pixel barrel	5.1	445
Pixel end-cap	3.1	193
Pixel total	8.2	638
Strip barrel	122	47
Strip end-cap	71	27
Strip total	193	74

ATLAS Phase II Letter of Intent

Inner layer

- 1. Low power
- 2. Low material
- 3. Occupancy
- 4. Resolution

hybrid pixels (65nm? + sensor?)

Outer layer

- 1. Low cost
- 2. Low power
- 3. Low material
- 4. Resolution

low cost hybrid pixels or monolithic?

High Luminosity LHC Environment - Requirements

Radiation levels:

- at 5 cm : ~1500 Mrad (2x10¹⁶ n_{eq}/cm²)
- at 25cm : ~100 Mrad (10¹⁵ n_{eq}/cm²)

* estimates for 10years of operation

TCAD simulations: resistivity – voltage – fill factor

Substrate:10 Ω cm – 2k Ω cm Nwell: 1V – 20 V Pwell: 0V

from Tomasz Hemperek

Charge_Collection

CPIX 2014 - 15.09.2014

$2 k\Omega cm PLUS$ potential difference

Fill Factor influence: here at $10^{15} n_{eq}/cm^2$

Charge_Collection

from Tomasz Hemperek

Summary: Resistivity, Voltage, Fill-Factor

Fill Factor

[%]

15

15

15

15

75

fraction of collected charge in first 10ns

from Tomasz Hemperek

Enabling technologies

"High" Voltage Special processing add-ons (from automotive and power management applications) increase the voltage handling capability and create a depletion layer in a well's pn-junction of o(10-15 μm).

"High" Resistive 8" hi/mid resistivity silicon wafers accepted/qualified by the foundry. WafersCreate depletion layer due the high resistivity.

Technology features
(130-180 nm)Radiation hard processes with multiple nested wells.
Foundry must accept some process/DRC changes in
order to optimize the design for HEP.

from: www.xfab.com

BacksideWafer thinning from backside and backside implantProcessingto fabricate a backside contact after CMOS processing.

Current approaches (a classification)

HV - CMOS

$$d \sim \sqrt{\rho \cdot V}$$

I. Peric et al.

Nucl.Instrum.Meth. A582 (2007) 876-885 Nucl.Instrum.Meth. A765 (2014) 172-176

- AMS 350 nm and 180 nm HV process (p-bulk) ... 60-100 V
- deep n-well to put nMOS (in extra p-well) and pMOS (limitation)
- \succ ~10 15 μ m depletion depth \rightarrow 1-2 ke signal
- \blacktriangleright various pixel sizes (~20 x 20 to 50 x 125 μ m²)
- so far: replaces "sensor" (amplified signal) in a "hybrid pixel" bonding (bump, glue, other...) to FE-chip => CCPD

see also talk by Andre Schöning

Current approaches (a classification)

Havranek, Hemperek, Krüger et al. JINST 10 (2015) 02, P02013

- (D)MAPS like configuration but w/ depleted bulk
- small collection node
- long drift path

=> smaller C, more trapping

- deep n and deep p wells
- large collection node
- short drift path
- => larger C, less trapping

Current approaches (a classification)

 $\begin{array}{c} & \mathsf{NMOS} \\ & \mathsf{PMOS} \\ & \mathsf{vias} \\ & \mathsf{vias} \\ & \mathsf{vias} \\ & \mathsf{p+} \\ & \mathsf{p-well} \\ & \mathsf{P-well} \\ & \mathsf{BOX} \\ & \mathsf{BOX} \\ & \mathsf{P-well} \\ & \mathsf{N-well} \\ & \mathsf{N-well} \\ & \mathsf{N-well} \\ & \mathsf{n+} \\ & \mathsf{p-} \\ & \mathsf{n+} \\ & \mathsf{p-} \\ & \mathsf{p+} \\ & \mathsf{p-} \\ & \mathsf$

- FD-SOI
- OKI/LAPIS/KEK Y. Arai et al.
- issues
 - back gate effect
 - radiation issues due to BOX
- cures invented in recent years
- but not suited for LHC pp
- HV-SOI (thick film)
- Hemperek, Kishishita, Krüger, NW doi:10.1016/j.nima.2015.02.052
- a promising alternative
- doped, non-depleted P- and N-wells prevent back gate effect and increase the radiation tolerance

Noise in a pixel detector

fast and low noise => needs g_m -> i.e. power

N. Wermes, HHA-2015, Berlin

The input capacitance to the CSA is crucial ...

- noise (ENC ~ C_{in}) increases with the input capacitance
- speed also depends on C_{in} => the smaller the better
- for active CMOS pixels there are additional capacitance contributions (see H. Krüger, http://indico.cern.ch/event/328762/contribution/4/material/slides/0.pdf)
 - C between deep N-well and P-well is dominant
 - C_{in} does not scale (down) with area

- hybrid planar pixels (e.g. ATLAS IBL, 50×250×200 μm³): C_{in} = 109 fF (Havranek et al, NIMA 714 (2013) 83-89
- CMOS pixel extrapolation: C_{in} ≈ 200 fF

ATLAS DEMONSTRATOR Working Group

One can think of different realisations for the ITK

□ fully monolithic providing the complete R/O architecture on-chip (FE-I3 or FE-I4 like)

□ smart CMOS pixel sensor + FE-chip

Sparsified CMOS exploiting in-Si routing options and possibly large bump pitches, eg C4 bumps, for low cost

demands/requirements are quite different for <u>inner</u> pixel layers (r=3-6 cm, small area) and <u>outer</u> pixel layers (r > 25 cm, large area)

FE-I4 as R/O chip

ATLAS DEMONSTRATOR Working Group

goal: develop a cm² sized CMOS pixel module

specs

Fig. 1: Alignment of demonstrator to FE-I4 chip

- radiation tolerant to 50 Mrad (TID), 10¹⁵ /cm² (NIEL)
- > 95% in-time (<25 ns) efficiency after irradiation
- < 20 µA power per pixel
- **bondable** via bumps or glue to FE-I4
- an area read out **through the pixel chip** (bonded to FE-I4)
- an area read out **standalone** -> to characterize CMOS part
- a **passive** area -> to compare to standard hybrid pixels

Some selected pre-demonstrator prototype results

AMS 180 nm

some encouraging results

- capacitive coupling seems to work in principle whether it is competitive in terms of reliability and price is unclear
- chips stand TIDs up to 1 Grad
- proton irradiation 10¹⁵ n_{eq}/cm² performed
- efficiency (time integrated): 99% -> 96%
- in-time efficiency not yet met (τ_{rise}~100 ns)
- signal ~ 1500 e ; SNR ~ 25
- characterizations w/o FE-I4 ongoing

The only CMOS sensor which has seen >> 10¹⁵ neutrons / cm² (up to 2 x 10¹⁶ n/cm², i.e. HL-LHC)

Collected Charge (25 ns, 90 μ m) [a.u.]

3

-6└⊥ -90

-80

-70

-60

-50

timing issue

more in dedicated HV-CMOS talk by Andre Schöning

Intime signal fraction increases with irradiation, probably due to acceptor removal and larger fraction of charge collected by drift also depletion depth increases to ~20 µm @ -80V

Unirradiated

-30

-20

-10

Bias Voltage [V]

0

1×10¹⁵

2×10¹⁶

-40

7.5×10¹⁵

HR-CMOS:

Electronics inside collection well

- Large fill factor for high CCE and rad-hardness
- Full CMOS, isolation via deep p-well (PSUB)
- HR substrate (2 kΩ cm), p bulk
- 150 nm process
- Bonn, CPPM, Karlsruhe

Electronics outside collection well

- Small fill factor, no competing wells
- Full CMOS, isolation via deep n- and p-well
- HR substrate >2kΩ cm, n bulk
- Backside thinning and implant: default option
- 150 nm

Prototypes: CCPD_LF (also: LF_CMOS sensor)

- First wafer received 2 weeks ago from cutting. Full thickness, no backside processing
 - 5 wafers at the foundry for backside processing (i.e. thinning and backside implant)
- Wafer: CZ 8", p-type, min. 2kOhm cm
- Technology parameters:
 - 150nm CMOS node
 - only regular transistors used
 - 4 metal layers used (6 available)
 - deep n-well and deep p-well
- Many testing capabilities
 - readout w/ and w/o FE-I4 chip
 - every pixel hit information can be read independently via shift register
 - every preamplifier output and comparator output can be monitored
 - HitOr
- Testing just started

Design: Bonn, CPPM, Karlsruhe

Prototypes: test chips EPCB01 and EPCB02

- 150nm CMOS, 6 metal layers
- deep p-well, isolated full CMOS
- substrate: n-type bulk (> 2 kΩ cm)
- bias voltage up to 20V
- 50µm thin + p-implant (backside)
- 6 pixel matrices
- pixel size: 40 × 40µm²
- ~50 μm depletion depth

main goal: characterization of designs & technology

Matrix version	Biasing & coupling	Analog FE
V1	Resistor + AC	Continuous
V2	Diode + AC	Continuous
V3	Direct + DC	Continuous
V4	Direct + DC	Switched
V5	Diode + AC	Switched
V6	Resistor + AC	Switched

Design & testing: Bonn, Prague

HV-SOI: test chips XTB01 and XTB02

180 nm: Electronics outside collection well

- Small charge collection well
- Full CMOS, no backgate effect due to isolation via deep p-well (non-depleted) between CMOS layer and BOX
- HV technology + MR substrate (100 Ωcm), p bulk
- 3 T readout

Design: Bonn Testing: Bonn, CERN

dedicated structures to test the technology further (leakage, break down voltage, etc.)

COL

XTB01 test chip: first irradiation tests

N. Wermes, HHA-2015, Berlin

arxiv 1412.3973, accepted NIM A

XBT01 in test beam - 50x50µm² pixel

universität**bonn**

Depletion depth $\approx 31\mu m$ Calculated depletion depth = 36µm (@100 Ωcm, -45V)

N. Wermes, HHA-2015, Berlin

- There is a large momentum in R&D for CMOS active pixels as an attractive direction for LHC experiments, even for LHC-pp.
- ... and if not for HL-LHC (too late?) ... then for sure for other applications (e.g. photon science).
- R&D profits from modern micro electronics technologies and its rapid progress.