Pixel Sensor Development Part I

Material, Small Pitch, 3D Technologies

A. Junkes

March 6th 2015 Alliance Detector Workshop Berlin

Pixel Detectors for HL-LHC

A. Junkes - Pixel Sensor Development Part II

UH

Ĥ

3/6/15

Pixel Design Challenges

Pixel Design Goals

A. Junkes - Pixel Sensor Development Part II

Ĥ

3/6/15

A. Junkes - Pixel Sensor Development Part II

Pixel Design Goals

UH

Pixel Design Goals

A. Junkes - Pixel Sensor Development Part II

Silicon "Materials"

Float zone (FZ) Magnetic Czochralski (MCz) Epitaxial silicon (EPI) Oxygen enriched FZ (DOFZ) Oxygen enriched EPI (EPI-DO)

Si-growth process determines

Impurity concentration, mainly oxygen

Silicon "Materials"

Float zone (FZ) Magnetic Czochralski (MCz) Epitaxial silicon (EPI) Oxygen enriched FZ (DOFZ) Oxygen enriched EPI (EPI-DO)

Si-growth process determines

Impurity concentration, mainly oxygen

Advantageous Annealing Behavior of p-MCz

- P-type MCz demonstrates advantageous "long term annealing"
- Operation voltage does not increase in MCz at long annealing times
- ightarrow Longer warm up or controlled annealing periods possible
 - \rightarrow Potentially good for power dissipation

From n-in-n to n-in-p

N-side read out is the preferred read out scheme

- Favourable combination of weighting and electric field in heavily irradiated detector
- CMS results show potential noise effects at doses > 1x10¹⁵ n_{eq}/cm²
- T-CAD simulations confirm the tendency of p-in-n strip sensors to exhibit higher electric fields at the strips for increasing oxide
- N-in-p is a single sided process \rightarrow cost effective
- Thin silicon with a double-sided process unlikely because of much lower yield (handling)

Pixel/Strip isolation required for n-in-p sensors

Pixel Design Goals

A. Junkes - Pixel Sensor Development Part II

UH

붜

3/6/15

Investigate Fine-Pitch Pixel Sensors

Motivation

- Improve spatial resolution (depending on $r\phi$, rz)
- Keep occupancy below %-level
- \rightarrow Investigate 25 μ m x 100 μ m (and 50 μ m x 50 μ m)

Problems for fine pitches

- Not enough space for p-stop for each pixel cell
- Not enough space for conventional bias scheme (for sensor tests)
- Not much experience with bias scheme at very high Φ
- \rightarrow Investigate alternatives
 - Common p-stop
 - Common punch through
 - Poly-Si resistors
 - No biasing scheme

Comparison of current CMS pixel cell size to foreseen size

UH

Investigate Alternatives

붜

3/6/15

Effect of the Bias Rail at 1×10¹⁶ neq/cm²

- Severe efficiency loss at the boundary of pixels, under bias rail
 - Sight efficiency loss due to the routing of bias resistor

UH

Ηř

3/6/15

Pixel Design Goals

A. Junkes - Pixel Sensor Development Part II

Thin Planar Sensors and 3D

The most promising technologies that are options for the phase II pixel upgrade: 3D and planar pixel sensors

ATLAS and CMS are jointly submitting 2 new productions!

UH

3D Sensors with Small Pitch

- Smaller pitches require very narrow columns
- And smaller inter-electrode spacing required for high Φ ullet
- Defined aspect ratio between hole heights and width \bullet
- To keep aspect ratio, sensors need to be thinner ٠
- \rightarrow Use handling wafer, requires thinning

Issue could arise from placing bump pads over columns

Summary

TDR for pixel detector planned for 2016 -2017

Material

- n-in-p technology cheaper and preferable
- Possible advantage of MCz due to annealing behavior

Small pitch

- Exploit planar and 3D technologies
- Exploit alternative/no biasing schemes

3D Sensor open questions

- Exploit benefit to radiation tolerance
- Exploit small pitch design

Back Up

Silicon Detectors Present and Future

Move to 3D Technology

Planar - Candidate main part of detector

3/6/15

пη

Depletion perpendicular to the sensor surface

- Minimize signal drift distance and time
- Less trapping of signal
- Leads to improved radiation tolerance over planar design
- Lower bias voltages = lower power = less cooling load
- 1/4th of the ATLAS IBL layer made of 3D sensors, designed for $\Phi_{\rm eq}{=}5x10^{15}\,{\rm cm}^2$

But:

- Expensive & time-consuming production
- Small pitches require thin devices (one of the advantages)

Bias Rail and Poly-Si Routing

A. Junkes - Pixel Sensor Development Part II

Detection of bulk defects

Technique	Based on/ measures	Results	Limits/ drawback
Deep Level Transient Spectroscopy (DLTS)	Charge capture-emission/ capacitance transients	Defects properties and concentration	- Low density of defects - Chemical nature (indirect)
Thermally Stimulated Current (TSC)	Charge capture-emission/ current	Defects properties and concentration	- Medium density of defects - Chemical nature (indirect)
Photoluminescence (PL)	Photon absorption-emission / luminescence	PL bands, defects ionisation energy	 Only for photo-active centers Chemical nature (only indirect)
Infrared Absorption (IR)	Excitation of vibrational modes of molecules by IR absorption / Absorption of IR energy	Defects chemical structure and	 Large density of defects Electrical properties

и No experimental technique provides all defects characteristics

Detection of bulk defects

Technique	Based on/ measures	Results	Limits/ drawback
Deep Level Transient Spectroscopy (DLTS)	Charge capture-enission capacitance transients Eleci	trical meth	OOS y of defects emcar nature (indirect)
Thermally Stimulated Current (TSC)	Charge capture-emission/ current	Defects promit	about erties
Photoluminescence (PL)	Photon absorption-emission / lumines	PL bands, defects ionisation energy	 Only for photo-active centers Chemical nature (only indirect)
Infrared Absorption (IR)	Excitation of vibrational modes of molecules by IR absorption Absorption of IR energy	ot tried ye	 Lerge density of defects Electrical properties

No experimental technique provides all defects characteristics

U

Thermally Stimulated Current technique

TSC principle

- Recording of charge emission $(e_{n,p})$ from 2. filled traps during constant heating
- N_t from integral of TSC-current 3.

Single shot technique:

1. Filling of traps with charge carriers at low T (<30 K) \rightarrow Filling (majority carriers with zero bias, majority and minority carriers by forward bias, light)

Signal as function of temperature

UH

Outline

Defects with impact on N_{eff}

Cluster defect E(30K) enhanced after protons

UH

Щ

3/6/15

• Shallow donor E(30K) overcompensates deep acceptors

Title

Silicon "Materials"

