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Pixel Detectors for HL-LHC

Energy: 8 TeV 13/14 TeV
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Pixel Design Challenges

Each experiment

has to cover
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Pixel Design Goals

Decrease inactive edges Optimize pixel

e 50 ym geometries
| (small pitches)
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Pixel Design Goals

Decrease inactive edges Optimize pixel
pm geometries
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Silicon “Materials”

Float zone (FZ) Si-growth process determines

Magnetic Czochralski (MCz) : : :
Impurity concentration, mainly oxygen

Epitaxial silicon (EPI)
Oxygen enriched FZ (DOFZ)
Oxygen enriched EPI (EPI-DO)
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Silicon “Materials”

Float zone (FZ) Si-growth process determines

Magnetic Czochralski (MCz) - : :
Epitaxial silicon (EPI) Impurity concentration, mainly oxygen

Oxygen enriched FZ (DOFZ)

- n-type
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Advantageous Annealing Behavior of p-MCz

Proton & neutron irradiated strip sensors Proton & neutron irradiated pad diodes

200pm n-in-p: Pitch: 80 um
—m— FZ 600V _

—A— dd-FZ 600V =.20°C
—A—dd-FZ 900V
—e— MCZ 600V

—0—MCZ 900V 20W@RT - '
FzZoooV [ P

ot 1
& MCz b | i
- I T Y |
I '
1

An-type A MCz 200um
Wp-type A FZ200um

12 _2
INeﬁI [10"° ecm™]

V gepi (200um) [V]

n
)
S
©
=
2
w
e
o}
o}
w

* Fze00V
Py i - Annealing scaled to 60 °C [min]
20Ww@RT 10
Annealing (h@RT)

 P-type MCz demonstrates advantageous “long term annealing”
* Operation voltage does not increase in MCz at long annealing times
— Longer warm up or controlled annealing periods possible

- Potentially good for power dissipation
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From n-in-n to n-in-p

N-side read out is the preferred read out scheme SiO, Charged

= p-artlicle Al

* Favourable combination of weighting and electric
field in heavily irradiated detector N-strip __..___...---"'k""""jP-stop

* CMS results show potential noise effects at doses > |
1x10*> n . /cm?

 T-CAD simulations confirm the tendency of p-in-n
strip sensors to exhibit higher electric fields at the
strips for increasing oxide

* N-in-p is a single sided process = cost effective el it oleon

* Thin silicon with a double-sided process unlikely required for n-in-p
because of much lower yield (handling) e

Noise histogram in 80 um pitch strip sensor

Entries 295000 Entries 295000
Mean -0.01104 + 0.007492 Mean 1.659 + 0.03167
RMS 4.069 + 0.005298 . RMS 17.18 £ 0.0224
¥*/ ndf 815.3/48 %/ ndf 1.961e+04 / 348
Constant 2.878e+04 + 6.634e+01 Constant 2.391e+04 + 6.018e+01
Mean -0.0123+0.0075 3 Mean -0.1302+ 0.0087
Sigma 4.067 +0.006 | Sigma 4.572+0.008

",h" 3/6/15 A. Junkes - Pixel Sensor Development Part Il 11



Pixel Desigh Goals

Decrease inactive edges Optimize pixel
pm geometries
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Investigate Fine-Pitch Pixel Sensors

Motivation

* Improve spatial resolution (depending on r¢, rz)

* Keep occupancy below %-level

= Investigate 25 um x 100 um (and 50 um x 50 pm)

Problems for fine pitches
* Not enough space for p-stop for each pixel cell
* Not enough space for conventional bias scheme (for sensor tests)
* Not much experience with bias scheme at very high ®
— Investigate alternatives
* Common p-stop
e Common punch through
* Poly-Siresistors
* No biasing scheme
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Investigate Alternatives

Poly-Si resistor
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Effect of the Bias Rail at 1x10'® neq/cm?

@ATLA

EXPERIMENT

(a) Poly Silicon, Common P-stop

(c) Punch Through, Common P-stop

() Pixel Electrode
Bias Rail

Overall hit Efficiency [%]

KEK18: PT / common P-stop

KEK20: PT / P-spray

KEK32: PolySi / common P-stop

KEK34: PolySi / P-spray

b) Poly Silicon, P-spray Local tracking efficiency maps
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(d) Punch Through, P-spray

===

e Common P-stop [ P-spray
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KEK19: PolySi/ common P-stop |
KEK21: PolySi / P-spray

b ety —4— KEK19: PolySi/ common P-stop

KEK32: PolySi/ common P-stop
)~ KEK33: PT/P-spray
—4—— KEK34: PolySi/ P-spary

Projected efficiency

1000 1200
Bias Voltage [-V]

» Severe efficiency loss at the boundary of pixels, under bias rail
» Sight efficiency loss due to the routing of bias resistor
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Pixel Design Goals
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Thin Planar Sensors and 3D

The most promising technologies that are options for the phase Il pixel upgrade:
3D and planar pixel sensors

Common advantages: Thin planar sensors: 3D sensors:

Short drift path * Low total leakage after * Thick sensor possible

Higher fields at same V, irradiation Drawback:

Common problems: Drawback: e Higher Capacity

ROC availability * Smaller initial signal (76e/um) [ * Low yield

Bump bonding e Design limits for small pixels * Are very small pitches
* Thinning of handling wafer possible?

ATLAS and CMS are jointly submitting 2 new productions!

IEGE

01.04.2014 A. Junkes - CMS Upgrade Week 17



3D Sensors with Small Pitch

Smaller pitches require very narrow columns
And smaller inter-electrode spacing required for high ®
Defined aspect ratio between hole heights and width
To keep aspect ratio, sensors need to be thinner

- Use handling wafer, requires thinning

Issue could arise from placing bump pads over columns

DRIE Process

ﬁ TLAS

R EXPERI MEU

25 x 100 100 um

>~ Sim.
®
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Summary

TDR for pixel detector planned for 2016 -2017

Material

* n-in-p technology cheaper and preferable
* Possible advantage of MCz due to annealing behavior

Small pitch
* Exploit planar and 3D technologies
* Exploit alternative/no biasing schemes

3D Sensor open questions
* Exploit benefit to radiation tolerance
* Exploit small pitch design
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Silicon Detectors Present and Future

Energy: 8 TeV, 13/14 TeV

SLEANL

Luminosity:
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Move to 3D Technology

Planar - Candidate main part of detector 3D - Candidate for first layer

+

Depletion perpendicular to the sensor surface
Minimize signal drift distance and time

= Less trapping of signal

ATLAS | Leads to improved radiation tolerance over planar design
Lower bias voltages = lower power = less cooling load
1/4t% of the ATLAS IBL layer made of 3D sensors, designed
for ®,,=5x10" cm?

But:

e Expensive & time-consuming production

e Small pitches require thin devices (one of the advantages)

FBK-IRS1
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Bias Rail and Poly-Si Routing

e AfterIrrad.
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Detection of bulk defects

Technique

Based on/ measures

Results

Limits/ drawback

Deep Level Transient
Spectroscopy (DLTS)

Charge capture-emission/
capacitance transients

Defects properties
and concentration

- Low density of defects
- Chemical nature (indirect)

Thermally Stimulated
Current (TSC)

Photoluminescence (PL)

Infrared Absorption (IR)

Charge capture-emission/
current

Photon absorption-emission /
luminescence

Excitation of vibrational modes
of molecules by IR absorption /

Defects properties
and concentration

PL bands, defects
ionisation energy

Defects chemical

- Medium density of defects
- Chemical nature (indirect)

- Only for photo-active centers
- Chemical nature (only indirect)

- Large density of defects
- Electrical properties

Absorption of IR energ

structure and

No experimental technique provides all defects characteristics




Detection of bulk defects

Technique Based on/ measures | Results Limits/ drawback
Deep Level Transient Charge capture-en=™ " ) Ods y of defects
Spectroscopy (DLTS) capacitance transie E‘eCtr‘ca\ meth —~<vimical nature (indirect)
!
Thermally Stimulated Charge capture-emission/ | Defects nrom=— b ut ‘ects
Current (TSC) current On a (0 =ct)
No \ﬂfOfmat‘

Photoluminescence (PL) odnd - Only for photo-active centers

ionisation energy - Chemical nature (only indirect)

Infrared Absorption (IR)  Excitation of vibrational e density of defects

of molecules by IR absorp i = - Electrical properties
Absorption of IR energ

No experimental technique provides all defects characteristics




Thermally Stimulated Current technique

TSC principle Single shot technique:

1. Filling of traps with charge carriers at low T (<30 K)
— Filling (majority carriers with zero bias, majority and
minority carriers by forward bias, light)

* Signal as function of temperature
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2. Recording of charge emission (e, ,) from
filled traps during constant heating

3. N,from integral of TSC-current 4 20

tsc-signal (pA)
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Outline
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Defects with impact on N_¢

N ¢ for n and p irradiation (CV) for Epi-Do Corresponding defects (TSC)

L L Annealing: 30 000 min at 80 °C, Vbias=100V
— Comparison of TSC spectra

reactor neutrons: x . 14 2
= exp data = +SC normalised to cI>eq=2.4x1O cm

~

fit (Hamburg model) L neutron irradiated
: N
23 GeV protons: —— proton irradiated

A expdata
-SC

A

—— fit (Hamburg model)

protons

Depletion voltage (V)

TSC-signal (pA)

V2+cluster

neutrons

400
T T T T
2x10" 4x10" 6x10" 8x10" 1x10" +SC

1 MeV neutron equivalent fluence @, (cm?®)

T T T T T
75 100 125 150 175

. Pintilie et al. NIM A 611 (2009) 52 Temperature (K)

* Cluster defect E(30K) enhanced after protons
 Shallow donor E(30K) overcompensates deep acceptors
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Silicon ”I\/Iaterials”

metallisation

Si-growth process determines T. ..'1'
. - ' n*-implants p |mplants
Impurity concentration, mainly oxygen
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Epitaxial silicon (EPI) .
Oxygen enriched FZ (DOFZ) or diffusion layer

Oxygen enriched EPI (EPI-DO)
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