Low Mass Design of the ATLAS Strip Tracker Upgrade

Tim Jones University of Liverpool

Helmholtz Alliance Workshop Berlin, March 2015

Outline

- Current SCT
 - Barrel and endcap design
 - Assembly
- Motivation for upgrade
 More, more, more...

- Design overview
- Modules, Mechanics & Services
- Materials
- Summary

U N I V E R S I T Y

Almost) none of the work (Almost) none of the work here is mine! presented here is mine!

The ATLAS Inner Detector

• 2 x 9 disks

Endcap SCT System Design

- Silicon modules arranged on disks in (up to) 3 rings
 - 52 / 92 / 132 modules per disk
 - Radial positions defined by hermeticity requirements
 - Double-sided modules with silicon rotated at /-20mrad to axis
- Hybrids mounted at end of silicon
 - Outer modules have hybrid at narrow end to maximise active radius
- Separation of FE ASIC and Silicon heat paths
 - Ensures optimal cooling of silicon to inhibit thermal runaway
- Module Interfaces
 - Thermal Contact
 - Electrical power
 - Redundancy
 - Plug-able Opto converters

SCT Barrel System Design

- Mid-mounted wraparound bridged hybrid with single-connector electrical interface
- Single edge cooling via baseboard
- On-cylinder 'dog-leg' for
 - Power interface to lowmass cable
 - Redundancy
 - Opto conversion

Motivation for Change!

Phase-2 All-Silicon Tracker

z (m)

- 4(pixel) + 5(strip-pairs) = 14 hits
- Strips: 200m² (5 ¹/₂ barrel layers + 2x7 disks) (**x3.3**)
- Pixels: 8 m² (**x4.7**)

Strip Tracker Design Drivers

- Positional Stability
 - ~few µm stability over timescales of ~days
- Thermal Stability
 - Good margin of safety with respect to Thermal Runaway
 - Tolerant to CO_2 evaporation temperature rise of ~ 5°C
 - Tolerant to sensor power increase of x2
- Radiation tolerant
 - Radiation dose is substantially greater than SCT but, crucially, less than current ATLAS Pixel doses
 - Sets the scope of materials choices
- Low integrated %X_o

UNIVERSITY

- How low is low?
- Improve on current SCT: 3%/layer in barrel and 3.5%/layer in EC
- Industrial-scale Assembly
 - Factor 3.3 increase in sensor area, x2 in modules, x40 in carbon-fibre structures (1,000 vs 10+4+10)
 - Community is smaller than in 2000 (Physicists have data!)

Local Supports

- Low-mass carrier for groups of modules
 - Stave: 2x13 modules
 - Petal: 2x6 modules
- Integrated services
 - Cooling
 - Electrical Connections
 - Data concentrator (EoS)
- Module Interfaces
 - Adhesive
 - Wirebonding
- Global Support structure for final positioning

High T conductivity foam

In what follows I discuss barrel staves – petals will be similar

Low Mass Design of the ATLAS Strip Tracker Upgrade

Carbon honeycomb

Stave Module Design

250 nm prototype

130 nm prototype

- Low-mass (substrate-less) hybrids glued directly on to silicon sensor
- Major initiative was moving from 128 to 256 channel ASICs
 - Collaborative effort between sensor, ASIC, and hybrid designers important
- Reduced material by 40%, hybrid bonding times by ~60%, module bonding times by ~30%
 - Reduced estimated production time by ~1 year

U N I V E R S I T Y

Hybrid Mass Production

- Conservative design rules
 - Maximize yields for 20,000 parts
 - Enable multi-vendor capability
 - Push down cost
- Design for Throughput in Assembly
 - Processing in 8-hybrid panels
 - Automated SMD placement and soldering of passive components
 - Mass attachment/wire bonding of custom ASICs
 - Test tokens to monitor track and via quality during production
- Hybrid Testing
 - With final ASIC set (ABCn-130nm, HCC, power), all hybrids in the panel tested with one data I/O and one power connection

Panel dimensions: 300mm x 200mm Hybrid dimensions: 24mm x 107.6mm

Module Powering

- Issue is that reducing I²R in power distribution requires high V, low I but ASICs run at low V
- Baseline powering choice is DC-DC
 - DC-DC base layout and FEAST ASICs provided by CERN PH-ESE
- Development of ATLAS Strip stave specific geometry (PCB and coil) to enable mounting on-silicon
 - Material reduced by shrinking packaging (from 0.1% to \sim 0.05% X₀ per module)
 - Custom flat coils are important to reduce height which drives clearances within a layer

Low Mass Design of the ATLAS Strip Tracker Upgrade

Module Radiation Length

- Module Material = 0.59%X_o
 - Long-strip module (outer two layers) has single hybrid so material = 0.51%X_o
- Dominated by:-
 - 0.32mm thick silicon sensor (58%)
 - Copper circuit (11%)
 - DCDC (9%)
 - ASICs (7%)

UNIVERSITY

Stave Detail

Stave Construction and Materials

- Stave is a sandwich structure with;
 - 2 co-cured face sheets
 - A central core manufactured from Ultracor honeycomb & Allcomp thermallyconductive foam
- Petal structure is essentially the same

UNIVERSITY

Component	Material	Remarks
Face sheet	K13C2U with Tencate EX1515 Cyanate-ester Resin (45g/m ² 40%RC)	3 ply 90/0/90 (0.15mm) co-cured to a Cu/kapton bus tape (0.2mm)
Honeycomb Core	Ultracor CFRP 1/4 to 3/8" cell size 2.0 to 3.5 lbs/cuft	thickness 5.2mm (machined/as-supplied)
Thermally Conducting Foam	Allcomp K9, 130ppi K~40W.mK ⁻¹	thickness 5.2mm
Cooling tube	Titanium CP3	2.275 x 0.125 wall
End Closeouts	PEEK CF30 / LCP	Machined / molded
C Channels	Carbon Fibre	Pre-preg + resin infusion
Adhesive	Hysol EA9396	+BN (30%) for Th. Cond.

Plank #9 manufacture

Co-curing (example from Petal)

- Method to attach Cu/Kapton bus tape to CFRP face sheet using resin in prepreg
- Complication is the elevated processing temperature (120°C) and large differential CTE (20ppm)
- Needs curved jig & curved pressure plate to get best results

Stave Core Radiation Length

– Adhesives (16%)

0

UNIVERSITY

End-of-Stave Region

- End-of-Structure Card
 - Electrical services (pig-tail to Axon connector)
 - Optical interface (Lightpeak)
 - Multi-later PCB with Cu/Kapton flex wrap-around
 - Material ~ 2%X_o in general rising to 4% in specific regions
- Insulating Breaks
 - Ensures electrical isolation of stave from services tree / other staves
 - Alumina isolator brazed to titanium end-caps
 - Material (smeared over 1 module) = 0.071%X_o

Interfaces

- Module
 - Glued to stave core with SE4445 (+ silver epoxy)
 - 0.1mm over full area = 0.03%X_o
 - Wire-bonded to bus-tape
- Services
 - End-of-Structure card glued to stave core & wire-bonded to bus tape.
 - Control & data output via optical interface
 - Power & temperature interlocks via electrical connector
- Support Cylinder
 - Single-edge mounting using discrete locking points
 - 5 locking points + stave fixations = $0.08\%X_o$
 - Allows for 'end-insertion' in to preassembled array of support cylinders inside global (7m long) outer cylinder

Barrel Support Structure

- Cylinders
 - Single skin (+ rings)
 - 4-ply (0/45/-45/90) (0.248 mm)
 - Material ~ 0.09%X_o
- Flanges
 - End-flanges with internal bonded web
 - Material unknown
- Interlinks
 - One per stave
 - Material unknown

Barrel end flange

stave all identical

rings not shown

(size varies)

Putting it all together

ERPC)

Summary

- Material optimisation has been a constant theme driving ATLAS Strip Tracker development
- Material savings made through
 - Integrated design (Local support cores)
 - Exploiting Technology (256 channel, 130nm ASICs)
 - Being bold (gluing hybrids to silicon, gluing modules to local support cores)
- Whilst ... keeping in mind the production challenges
 - Simple modules to ensure efficient mass production
 - Local supports to ensure longer parallel production paths
 - Simple module to structure/services interfaces to enhance reliability