Development of hybrid pixel modules for HL-LHC

Δp.Δg≥źt

8th Terascale Detector Workshop, Berlin, 6 March 2015

Introduction

- Thinning technologies for pixel sensors
- Comparison of Charge Collection results at different thicknesses after irradiation
- Effect of thickness on tracking at high eta
- Performance of active / slim edge 3D and planar sensors
- Module design for hybrid pixel modules at HL-LHC

Thin pixel sensors for HL-LHC

*Thin active thickness very attractive:

- After irradiation charge collection length reduced, so thickness no advantage
- Higher electric field, faster collection times
- lacksim Lower operation bias voltages ightarrow lower power
- Lower occupancy at high eta
- Possibility to reduce material (multiple scattering)

Reduce dead regions at edge of sensors

Allows the innermost layers to remain closer to the IP by avoiding the need for tiling → several methods investigated

Thin planar pixels on SOI material + active edges

- First production: n-in-p pixels on FZ and MCZ SOI material
- 🗖 100 μm and 200 μm thickness

□ Flip-chipping performed at VTT after removal of support wafer (etching down to SiO₂ interface, acting as a natural etching stop)

Thin Silicon Substrates

- Use wafer stacks with a low resistivity substrate than can be used as a contact on the backside
 - Epi material with MCz substrate
 - Si-Si direct bonding: for our applications high resistivity FZ to low resistivity MCz

CMS HPK Campaign

- Deep Diffused Silicon, effective thin active layer created on thicker substrate
- Smoother Neff transition than in composite substrates

Alternative thinning method without support wafers (I)

- relatively simple technology without using support / handling wafers
 - □ anisotropic wet etching (KOH) on <100> wafers
 - Experience with this technology at CIS for MEMS/ pressure sensors production

- First R&D production on 4" p-type FZ wafers; process contributed by CIS; target thickness 100 and 150 μm
 - **Δ** Starting thickness 525 μm
 - Front-side processing up to nitride deposition

- Back-side p+ implantation, top-side p-spray → common annealing step
- Metallization on the front and back side
- UBM (electroless Nickel at CiS or standard one at IZM)
- dicing

Alternative thinning method without support wafers (II)

Two sets of dicing lines:

- $\hfill\square$ On the 420 μm wide frame between the structures
- Dicing along the sensor perimeter on the thinned substrate
- Guard ring structure within the thinned area

Design in collaboration between MPP and CIS

- First etching trials on test wafers :
- 325 minutes etching time

Maximum thickness variation inside the quad sensors ~ 10 μm

Comparison between 100 and 200 µm thick sensors

FE-I4, 100 μ m thick, 5x10¹⁵ n_{eq} /cm²

FE-I4, 200 μm thick, 5x10¹⁵ n_{e0}/cm²

VTT FE-I3 100 μ m, Φ =5x10¹⁵ n_{e0}/cm²

(99.0±0.3)% global hit efficiency at Vbias= $300 V (125 \mu m edge)$

VTT FE-I₄ 100 μm, Φ=5x10¹⁵ neq/cm²

(97.0±0.3)% global hit efficiency at Vbias ≥ 350 V

VTT FE-I₄ 200 μm, Φ=6x10¹⁵ neg/cm²

 (96.9 ± 0.3) % global hit efficiency at Vbias= 500 V

Charge collection for pixels of different thickness (I)

At higher fluences the effect of charge trapping tends to equalize the charge collection efficiency for all thicknesses

 \odot

Charge collection for pixels of different thickness (II)

- Epitaxial strip silicon sensors of n and p-type baby sensors from HPK campaign
- **1** 100 μ m active thickness + 200 μ m thickness for 1.3 x 10¹⁶ neq cm⁻²
- \square MCZ with 200 µm physical thickness, only @ 1.3 x 10¹⁶ neq cm⁻²
 - \rightarrow 100 µm \rightarrow faster signal recovery
 - ightarrow 200 μ m ightarrow higher breakdown voltage
 - ightarrow Similar signal height for both thicknesses at highest bias

Effect of thickness on tracking at high eta

¶∆p.∆g≥<mark>źź</mark>

Tracking with 50x50 μ m² pitch pixels: Cluster Multiplicity

Planar Sensor (100 μ m thick), eta=2.5

Module Tuning:

- Threshold 1 ke (planar, 3D), 1.5 ke (3D)
- Charge calibration 6 ToT at 4 ke
- Measured cluster width in Y (along 50 µm pitch direction) 2-3 units less than pure geometrical expectations
- Difference is due to ~ 1 degree misalignment and threshold effects in the entrance and exit pixels

3D Sensor (230 µm thick), eta=2.5

Slim / active edges

Hit efficiency for active edge planar pixel modules

- **Γ** FE-I3: 50 μm active edge with floating GR
- □ 4 GeV electrons, EUDET telescope
- 99 % hit efficiency on the last pixel column
- (87.4 ±0.7) % hit efficiency between pixel implant and sensor edge (50 μm)
- $\boldsymbol{\rightarrow}$ Completely efficient up to last 20 μm from the edge

Slim edge pixel modules after irradiation

The set of the set o

- irradiated at Φ=5x10¹⁵ n_{eq}/cm²
- threshold: 1500 e-
- (69±3=2)% hit efficiency between the last pixel implant and the BR (DESY, 4 GeV electrons)
- ightarrow 100 μ m effective inactive edge

 $\Delta p \cdot \Delta q \ge \frac{1}{2}$

Active / slim edge 3D sensors

- Studies to achieve very slim edges with 3D sensors for ATLAS Forward Physics Experiment (AFP)
- Edge termination: CNM: 3D guard ring of n⁺ columns + p⁺ ohmic-column fence
- □ FBK: p⁺ ohmic-column fence
- Left/right edge: already 200 μm slim edge for IBL
- Bottom (should be slim for AFP): 1.5 mm bias tab in IBL production (not needed!)

E. Cavallaro, Status of the 3D silicon detectors for the ATLAS AFP, Trento Workshop 2015

Test beam results of active / slim edge 3D sensors

E. Cavallaro, Status of the 3D silicon detectors for the ATLAS AFP, Trento Workshop 2015

- DESY testbeam (4-5 GeV e-) with EUDET-type telescope
- Efficiency stable up to last pixel (smeared by telescope resolution)
- For FBK even ~75 um beyond pixel edge → Efficient edge due to absence of guard ring
- For both CNM and FBK <150 µm insensitive edge! → Slimmest edge apart from fully active edge technology

FA

 \mathbf{O}

Slim edge in the ATLAS IBL n-in-n sensors

 $\mathbb{Z}_{p\cdot\Delta_g}$

Multi chip module assemblies for HL-LHC

Outer pixel layers will be instrumented with multi chip modules: quad sensors cover 4 FE-I4 chips, using long and ganged pixels between FE-I4 to increase active area

Quad modules are being developed by German, Japan, UK ATLAS groups

Liverpool Quad PCB

Thinning the read-out chip

- Good yield for full thickness modules with solder bump bonding and different vendors
- Modules with chips thickness ≤ 150 µm shows disconnected areas at the edges → Bowing due to CTE mismatch between metal stack and silicon substrate

- ATLAS: Investigate remove or reduce bowing with stress compensation layer on back of chip
- Effort underway at a number of vendors (HPK, LETI)
- Measurement of bow and material properties suggest using: 0.5µm SiN/Ti/4µm Al-Si SCL

Large area pixel modules for HL-.-LHC pixel upgrades, C.Buttar, Pixel 2014

- IZM developed a glass carrier substrate, glued with polyimide glue, that can be dissolved by laser exposure
- Used for the ATLAS IBL with chip 150 μm thick, now under study for quad modules and chips 100 μm thick

Spark protection

- Consequence of p-type choice: HV is close to ASIC and sparking can occur
- As voltages of up to 1000V may be required, protection is necessary

Development of HPK/KEK pixel sensors, Y. Unno. Pixel 2014

→ no HV breakdown up to 1000 V

Very good radiation hardness shown with sensors of the CMS HPK campaign

- 3 μm thick BCB coating (ATLAS) with lithography on sensor surface to open the bump contact \rightarrow also tested up to 1000V
- The vertical walls of the sensors are still unprotected \rightarrow BCB coating also on the cantilever side of the chip could help

Alternative interconnection methods

- A cheaper alternative sensor post-processing under development at CIS is electroless Nickel UBM (w/ or w/o mask), in combination with IZM solder bumps
 - \rightarrow also in this case UBM pad= 20 μ m
 - At ADVACAM thin film UBM pads on sensor side compatible with SnPb solder bumps processed in house or Cu pillars in collaboration with CEA-LETI

Summary

- Different technologies are being investigated for the production of thin hybrid pixel modules for the ATLAS/CMS trackers at HL-LHC
 - Charge collection measurements and beam tests prove the possibility of operating thinner detectors at reduced bias voltages with respect to thicker devices
 - Islim/ active edges can be employed to avoid module superimposition in the inner layers → compromise between reduction of inactive area and achievable V_{break}
 - Many engineering solutions explored for the production of full hybrid pixel modules for HL-LHC. Prototyping effort needed to address:
 - Spark protection
 - Flip-chipping of thin read-out chips
 - Low cost bump-bonding

Additional material

 $\mathbb{A}_{p} \mathbb{A}_{g} \ge \frac{1}{2}$

Phase II Pixel System Layout and Requirements

2 Outer Barrel Layers / Disks

- Planar n-in-p sensors baseline option
- Sensor thickness 150 μm
- □ 2x2 (Quad) chip modules

2 Inner Barrel Layers

- Sensors: different materials and technologies possible
- Radiation hardness up to 2x10¹⁶ n_{eq}/cm²
- **□** Thickness: 150 µm or lower
- Pixel pitch of 25x100 µm² or 50x50 µm² → FE-chip in 65 nm CMOS technology

Second production of active edge pixels at ADVACAM

Active edge process for all the structures

Wafer layout of the new production at ADVACAM (spin-off VTT)

- In collaboration with Glasgow, Göttingen, LAL, CLIC CERN-LCD,
- Geneva University for medical applications

50, 100, 150 μm sensor thickness: 5 FZ p-type wafers for each thickness

- FE-I4 quad sensor
- FE-I4 single chip sensors different geometries
- Omegapix sensors
- TIMEPIX sensors for CLIC R&D
- CLICpix sensors for CLIC R&D
- Pixel and strip structures for medical applications

FE-I₄ Single Chip Modules

FE-I4 with 50 µm edge, one GR, no punch-through structure

FE-I4 with 100 µm edge, Bias Ring + Guard Ring, std punch-through structure

FE-I4 with 100 µm edge, Bias Ring, new external punch-through structure

FE-I4 with 100 µm edge, Bias Ring, std punch-through structure

 $\Delta p \Delta q \ge \frac{1}{2}$

50 μm active sensor thickness 380 μm thick handle wafer

- Production of the sensor wafers completed
- Next steps:
 - Electroless UBM
 - Removal of the handle wafer
 - Flip-chipping of the first FE-I4 and TIMEPix modules

Comparison between 100 and 200 μm thick sensors

FE-I4, 100 μm thick, 5x1015 n_{eq}/cm^2

 $\Phi = 0, \text{ thr.: } 1600 \text{ e}$ $\Phi = 2, \text{ thr.: } 1000 \text{ e}$ $\Phi = 6, \text{ thr.: } 1000 \text{ e}$ $\Phi = 6, \text{ thr.: } 1000 \text{ e}$ $\Phi = 6, \text{ thr.: } 1000 \text{ e}$ $\Phi = 10^{15}/\text{cm}^2$ $\Phi = 0, \text{ thr.: } 1000 \text{ e}$ $\Phi = 10^{15}/\text{cm}^2$ $\Phi = 0, \text{ thr.: } 1000 \text{ e}$ $\Phi = 0, \text{ thr.: } 1000 \text{ thr.$

FE-I4, 200 μm thick, 5x10¹⁵ n_{e0}/cm²

VTT FE-l3 100 μm, Φ=5x10¹⁵ n_{eq}/cm²

(99.0±0.3)% global hit efficiency at Vbias= 300 V (125 μm edge)

VTT FE-I4 100 μm, Φ=5x10¹⁵ neq/cm²

(97.0±0.3)% global hit efficiency at Vbias ≥ 350 V

VTT FE-I4 200 μm, Φ=6x10¹⁵ neq/cm²

(96.9±0.3)% global hit efficiency at Vbias= 500 V

Hit efficiency for slim edge pixel modules

Γ FE-I3: 125 μm edge with BR

- not irradiated
- V_{bias}= 20V
- threshold: 1500 e-
- (69±3)% hit efficiency between the last pixel implant and the BR (CERN SpS, 120 GeV pions)

50 µm

VTT active edge sensors

□ Irradiation of active edge FE-I₃ module with reactor neutrons in Ljubljana at Φ =2x10¹⁵ n_{eq}/cm²

🗖 100 µm thickness

Charge collection measurements after irradiation with a ⁹⁰Sr source and the USBPix system

CC comparison between central and edge columns

2

Comparison of FE-I₃ and FE-I₄ performance

Development of hybrid pixel modules for HL-LHC

100 µm thickness: FE-I3 modules show a hit efficiency higher than FE-I4 modules at equal fluence and voltage

FE-I₃ module

 $V_{bias}=350 V$

Comparison of FE-I₃ and FE-I₄ performance

Active edges with planar n-in-p sensors - 100 μm thick

5

Charge collection efficiency after irradiation

FE-I3 100 µm thick sensor with 125 µm slim edge, threshold 1500 e- → 87% CCE at 300 V for both all and edge pixels after irradiation at KIT (1x10¹⁵ n_{eq}/cm²)

p-type MCZ FE-I4, 100 μm thick sensor, with 125 μm slim edge, threshold 1100 e → compatible charge collection properties between edge and internal pixels

Charge collection efficiency after irradiation

FE-I3 100 µm thick sensor with 125 µm slim edge, threshold 1500 e- → 87% CCE at 300 V for both all and edge pixels after irradiation at KIT (1x10¹⁵ n_{eq}/cm²) and in Ljubljana (5x10¹⁵ n_{eq}/cm²)

p-type MCZ FE-I4, 100 μm thick sensor, with 125 μm slim edge, threshold 1100 e → compatible charge collection properties between edge and internal pixels

Charge collection for pixels of different thickness

 \odot pixel modules for HL-LH Development of hybrid

Charge collection for pixels of different thickness

Tracking with 50 μm pitch pixels at high eta

- lacksquare Aim: study the performance of 50x50 μ m² pitch at high η
- □ Solution: use FE-I₄ modules at high ϕ (80° \rightarrow η =2.5) almost parallel to the beam but rotated by 90° with respect to their normal pixel orientation in the detector
- Samples: 100 μm thick planar sensor (VTT) + 230 μm thick 3D sensor (CNM), back to back in the beam
- ITK/ RD50 test-beam at CERN SPS, October 2014

- **3D** sensor results by I.Lopez
- E. Cavallaro, S. Grinstein, J. Lange

Tracking with 50 μm pitch pixels at high eta (II)

- □ No tracking information from EUDET telescope used (problems encountered in reconstruction)
- □ Very long cluster expected along z for high $\phi = 80^{\circ}$ (η =2.5), use them as "tracks"
 - ~100 % cluster efficiency, more interesting to look at cluster splitting
 - Per pixel hit efficiency determined looking at the pixel w or w/o hits inside the cluster, excluding entrance and exit pixels.

Tracking with 50 μm pitch pixels: Charge Collection

