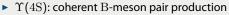


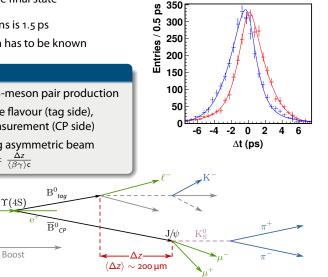
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Introduction Mechanics and cooling Design Conclusions

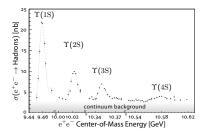

2

Measurement of CP Violation

Measure time dependent decay asymmetry of B and $\overline{\mathrm{B}}$ going to the same final state


- lifetime of B mesons is 1.5 ps
- flavour of B meson has to be known

Solution



- one B to determine flavour (tag side), other B for CP measurement (CP side)
- boost system using asymmetric beam energies $t \to \Delta t = \frac{\Delta z}{\langle \beta \alpha \rangle c}$

e

Experimental requirements

Best place to produce ${\rm B}\overline{\rm B}$ in a clean environment is at the $\Upsilon(4S)$:

- lowest energy with free B mesons
- $\blacktriangleright\,$ 1/3 of all hadronic events are ${\rm B}\overline{\rm B}$
- possibility to "turn off" B production by lowering center of mass energy by 50 MeV

Differences to LHC Experiments

Energy is factor $\mathcal{O}(1000)$ smaller than at the LHC

- mean momentum of charged particles is around 500 MeV
- tracking charged particles down to $p_t \approx$ 50 MeV

Electron Collider:

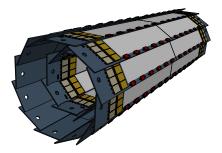
- full knowledge about the center of mass frame
- no underlying events
- but: lower cross section (more than factor 100)

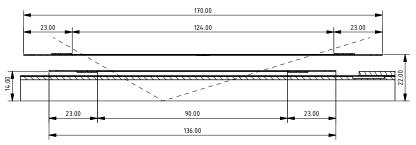
Belle/Belle II Experiment

Asymmetric $\mathrm{e^+e^-}$ experiment mainly at the $\Upsilon(4S)$ resonance (10.58 GeV)

KEKB/Belle SuperKEKB/Belle II
operation 1999 – 2010 2018 –
peak luminosity $2.11 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ $8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
integrated luminosity 1023 fb ⁻¹ (772 million $B\overline{B}$ pairs) 50 ab ⁻¹

Time of Propagation counter DIRC with 20 mm quartz bars MCP-PMT readout **Electromagnetic Calorimeter** 8000 Csl Crystals, 16 X₀ PMT/APD readout

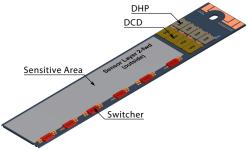

Pixel Vertex Detector 2 layer pixel detector (8MP) DEPFET technology


Silicon Vertex Detector 4 layer double sided strips 20 — 50 ns shaping time

Central Drift Chamber proportional wire drift chamber 15000 sense wires in 58 layers Aerogel RICH Proximity focusing RICH with silica aerogel

Pixel Vertex Detector (PXD)

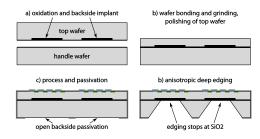
- innermost part of the detector
- covers acceptance of $17^{\circ} < \theta < 150^{\circ}$
- 2 layer pixel detector with 40 DEPFET sensors (7.68 million pixels)
- readout time of 20 µs
- data rate of 240 Gb/s = 30 GB/s
- $\blacktriangleright\,$ pixel size from 50 \times 55 μm to 50 \times 85 μm
- total material budget of 0.28 %X_o



Sensors and Power Consumption

DEPFET pixel sensors (details by Ladislav Andriček)

- ▶ 250 × 768 pixels
- sensitive area size:
 12.50 mm × 44.80 mm (layer 1)
 12.50 mm × 61.44 mm (layer 2)


Three different ASICs on the sensors:

Name	Purpose	Position	Power consumption
DCD	Signal digitization	end of sensor	4 W
DHP	Digital signal processing	end of sensor	4 W
Switcher	Row addressing	along sensor	0.5 W

- sensitive area has power consumption of 0.5 W
- power consumption dominated by end of sensor (8 W)
- no need for extensive cooling inside acceptance

Sensor Thinning

- sensitive area will be thinned down to 75 μm
- integrated support frame to keep stability

 additional mass reduction by edging brick structure into frame

Ladder Design

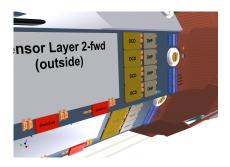
المحالا حاسير الألامس لأحديس الالاريمير الأحجميرات	ی تصدیر کامندری استان کمند زیر تعدار کمندی	020 den 155
Sensor Layer 1-bwd (inside)	Sensor Layer 1-fwd (inside)	••• 2

Ladder formed from 2 sensors

- ladders are self supporting
- butt-face joint glueing
- reinforced with ceramic inserts
- almost no additional material
- only 850 µm dead area

extensive stability studies
 4 types of different sensors

Ladder Assembly


المحالا حاسير الألامس لأحديس الالاريمير الأحجميرات	ی تصدیر کامندری استان کمند زیر تعدار کمندی	020 den 155
Sensor Layer 1-bwd (inside)	Sensor Layer 1-fwd (inside)	••• 2

Ladders screwed on support

- elongated hole on one side
- M1.2 screw with plastic washer
- o-ring to prevent contact between screw and silicon
- torque of 15 mNm

torque allows for compensating of thermal expansions

Stability studies

tensile strength tests carried out

- single piece of silicon tested up to 7 kg
- gluing of unthinned silicon stable to 6 kg
- gluing of 50 μm thin silicon survived 5 kg

deformation tests

- single piece of silicon breaks at 1.4 mm
- no problems up to 1 mm deformation

Cooling Concept

Requirements

- total system power is 360 W (80 W in sensitive region)
- silicon temperature below 25 °C
- chip temperature below 50 °C

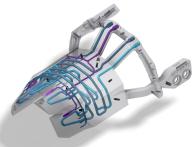
End of sensor:

- 2-phase CO₂ cooling system
- joint development with ATLAS IBL
- ▶ provide -20 °C below end of sensor to cool ASICs

Along the sensor:

▶ provide moderate airflow (1 m/s at -5 °C) to cool Switcher and sensitive area

Support



manufactured using 3D printing technology

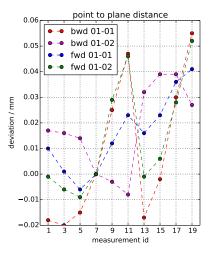
- stainless steel
- integrated cooling channels
- closed CO₂ channel to cool end of sensors
- nitrogen channels to provide airflow
- coated with 15 µm Parylen

The PXD will be mounted directly on the beampipe

- assemble in two half shells
- one common support for both layers
- combined support and cooling blocks (SCB) per detector half
- connected by silver coated carbon fiber tubes for air cooling and grounding

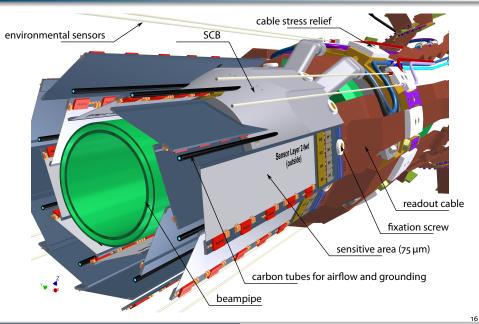
SCB Prototypes

Final SCB Prototypes


- precision machining of surfaces
- roughness R_a around 0.25 μ m
- flatness better than 7 μm

All cooling channels operational

- pressure tested with 186 bar for 1 h
- helium leakage smaller than 10⁻⁹ mbarl/s


Measurement of SCB Prototypes

- measured relative distances between surfaces
- $\blacktriangleright\,$ deviations from nominal mostly around 20 μm

Full System (Cut View)

Conclusions

Belle II Pixel Vertex Detector

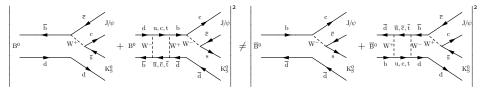
- self supporting silicon detector
- sensitive area thinned to 75 μm
- power dissipation mostly outside of geometrical acceptance
- combined support and cooling blocks (stainless steel, 3D printed)
- total material budget of 0.28 %X_o

Cooling

- 2-phase CO₂ cooling system to cool chips
- joint development with ATLAS IBL
- moderate airflow between sensors to cool sensitive area
- virtually no additional material from cooling inside acceptance

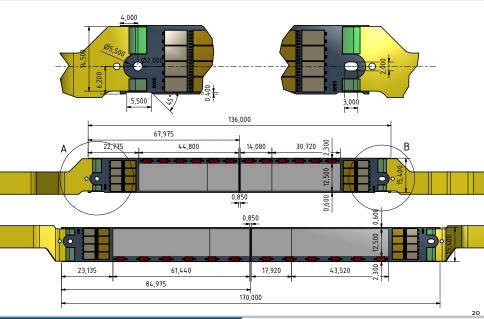
Outlook and schedule

- optimizing and refining ladder assembly/handling procedures
- start full ladder assembly beginning 2016
- ready for system tests and integration by March 2017


Measurement of CP Violation

Objective: Measure time dependent decay asymmetry of ${\rm B}$ and $\overline{{\rm B}}$ going to the same final state

$$a_{CP}(t) = \frac{\Gamma\left(\overline{\mathrm{B}}^{0} \to f_{CP}; t\right) - \Gamma\left(\mathrm{B}^{0} \to f_{CP}; t\right)}{\Gamma\left(\overline{\mathrm{B}}^{0} \to f_{CP}; t\right) + \Gamma\left(\mathrm{B}^{0} \to f_{CP}; t\right)}$$


3 possible contributions

- CP violation in decay (direct)
- CP violation in mixing (indirect)
- CP violation by interference of mixing and decay (mixing induced)

- ► For B mesons, contributions from indirect CP violation are negligible
- For many decays, loop diagrams contribute to the amplitudes
 - possibility to indirectly detect new physics

Ladder Dimensions

Particle Contamination of Cooling Channels

Cooling channels were cleaned after manufacturing

- blow N2 into cooling channels
- measure particle contamination at outlet
- probe volume 0.1 ft³/min

particle size	contamination	N2 line
o.5 μm	9000–15000	8000
0.7 μm	4000-8000	3000
1.0 µm	2000-4000	1000
2.0 µm	300-1500	200
5.0 µm	20-80	30

