

CMS Pixel CO₂ Cooling Low-mass Design Studies

Lutz Feld, Katja Klein, Marius Preuten, <u>Max Rauch</u>, Silvan Streuli (PSI), Michael Wlochal

8th Terascale Detector Workshop 2015

Berlin, March 5th 2015

Outline

- CMS pixel detector phase-1 upgrade
 - Replacement of the current detector
 - Two-phase CO₂ cooling
- Low-mass module mechanics
- Cooling studies
 - Thermal resistance of module structure
 - Measurements
 - FE simulations
 - Optimization of the cooling structure
- Conclusions

New Pixel Detector

RNTHAACHEN UNIVERSITY

- → Will be installed during extended year-end technical stop 2016/2017
 - A 4th outer layer is added to the barrel detector part (BPIX)
 - The inner layer is moved closer to the interaction point (from 4.4cm to 3.0cm)
 - A new digital read-out chip (ROC) has been designed

Expected data loss	1x10 ³⁴ cm ⁻² s ⁻¹ @ 25ns	2x10 ³⁴ cm ⁻² s ⁻¹ @ 25ns	2x10 ³⁴ cm ⁻² s ⁻¹ @ 50ns
Current Layer1	4.0 %	16.0 %	50.0%
Upgrade Layer1	1.1 %	2.4 %	4.8 %

Material Budget

RNTHAACHEN UNIVERSITY

eta

CO₂ Two-Phase Cooling

- In monophase cooling systems, the liquid is heated up by the power of the detector component
 - A large amount of cooling liquid is needed
- CO_2 is in the two-phase regime \rightarrow liquid and gaseous state exist simultaneously
- Heat removal by evaporating liquid CO2 at constant temperature and pressure

CO_2 two-phase cooling is an efficient concept for low-mass detectors.

Cooling Pipes

5 Mar 2015

8th Terascale Detector Workshop 2015, Max Rauch

RNTHAACHEN

Pixel Module Components

Structure of BPIX Detector

Basic Module Mechanics

Constraints on the low-mass cooling design

heat power up to 4.5W

- No massive cooling blocks can be installed
- Small contact surfaces between carbon fiber structure and cooling pipe
- Limited thermal conductivity of carbon fiber plates
 - Relatively good conductivity in x-y-direction (k_{xv} > 10 W/mK)
 - Bad conductivity in z-direction $(k_z < 1 W/mK)$

Critical point: How to get the heat into the pipe?

Optimization of the cooling performance is very challenging

Ambient temperature
$$T_a$$

 $\Delta Q/\Delta t = \gamma (T_{module} - T_{ambient})$
Heat load on module
(0W - 7W)
 $\Delta Q/\Delta t = \beta (T_{module} - T_{CO2})$
CO₂ cooling systemT_{CO2}

Heat exchange to ambient

- ${\ensuremath{\,^\circ}}\xspace$ y is estimated to be 0.1 W/K
- Total heat exchange in the order of 0.5W

<u>Thermal resistance $\alpha = \Delta T / \Delta P [K/W]</u>$ </u>

- Property of module mechanics
- In this model: $\alpha = 1/\beta$

$$P_{\text{module}} = \beta(T_{\text{module}} - T_{CO2}) + \gamma(T_{\text{module}} - T_{\text{ambient}})$$

Expression for module temperature

$$\Rightarrow T_{\text{module}} = \frac{1}{\beta + \gamma} P_{\text{module}} + \frac{\beta T_{CO2} + \gamma T_{\text{ambient}}}{\beta + \gamma}$$
Linear relation

$$\Rightarrow T_{\text{module}} = cP_{\text{module}} + T_0$$

Power of the Pixel Modules

- Power consumption of the ROCs depends on position in the detector (hit rate)
- Leakage current of the sensor depends on collected irradiation and sensor temperature

 $P_{\rm leak.\; current} \propto T_{\rm sensor}^2 e^{-\frac{\Delta E}{2k} \frac{1}{T_{\rm sensor}}}$

- → i.e. the leakage current doubles if the temperature increases by about 7K
- Leakage current is limited by High-Voltage power supplies
- Design goal is a sensor temperature of -4°C at coolant temperature $T_CO_2 = -15^{\circ}C$

Layer	Int. Lumi	Sensor	ROCs	Power	α
Layer 1	250 fb ⁻¹	2.6W	4.4W	7W	1.8 K/W
Layer 2	500 fb ⁻¹	1.7W	2.8W	4.5W	2.8 K/W

ΔT/P vs. T CO2 at several T Sensor Layer 1

8th Terascale Detector Workshop 2015, Max Rauch

BPix Thermal Mock-Up

- CO₂ cooling system in RWTH laboratory
 - Temperatures between -20°C and 20°C
 - CO_2 flow up to 1.5 g/sec
- A thermal mock-up is used for simulating the thermal properties of the modules
- Heating resistors are used for applying heat loads between 0W and 7W
- Measurements are made with copper dummy modules

RNTHAACHEN

Measurement of the Thermal Resistance

- A heat load 0W 5W is applied in steps of 0.1W
- Temperature is measured redundantly on several components
 - on top of the module
 - on the carbon fiber plate
 - on the cooling pipe
- For every component the thermal resistance to the CO₂ can be measured

Component	Тор	CF	Pipe
α [K/W]	3.7	3.2	0.3
Δα [K/W]	0.5	2.9	0.3

- Main contributions to the thermal resistances can be read off
- Largest contributions stems from the transition carbon fiber plate to pipe

Position of the thermistors on the module

Power [W]

Comparison between different Glues

- The glueing between carbon fiber support and cooling pipe is tested with several glues
 - EPO-TEK T7110
 - Araldite Standard
 - EPO-TEK 301
- EPO-TEK T7110 is
 - a thermally conductive glue
 - rather viscous
- EPO-TEK 301 is
 - a standard 2-component glue
 - low-viscous and easy to handle

Thin layers of low-viscosity glues have same properties than rather viscous thermal glues

 \rightarrow May use the glue which is the easiest to handle.

Copper dummy module

Thermally Conductive Paste

- Thermally conductive paste is brought between base strips and carbon fiber plate
- Keratherm KP 98
- Thermal improvement due to better thermal contact and higher conductivity

α [K/W]	Тор	CF	Pipe
w/o thermal paste	3.7	3.2	0.3
w thermal paste	2.8	2.4	0.2

Disadvantage

Removement and replacement of pixel modules becomes more difficult

- \rightarrow base strips "stick" at the carbon fibre
- \rightarrow possibility of destroying the module

Copper dummy module

Results - Overview

Bare silicon module	T_CO ₂ = 15°C	"Sensor"	Carbon fiber
Heat resistors	α (Si) [K/W]	3.3	2.4
Addature contract of the second secon	α (Cu) [K/W]	2.8	2.4
	$\Delta \alpha$ (relative) [%]	15%	-
	$T_CO_2 = -20^{\circ}C$	"Sensor"	Carbon fibre
	α (Si) [K/W]	3.6	2.6
Magauramanta at	α (Cu) [K/W]	3.2	2.6
a CO temperature	Δα (relative) [%]	12%	-
$a = C_2$ temperature	α (design value) [K/W] Layer 2-4	2.8	-
01 -20°C	α (design value) [K/W] Layer 1	1.8	-

- All measurements were done with thermally conductive paste
- α (silicon) was measured 12% 15% higher than for copper
 - better thermal conductivity of the copper modules
- The main contribution still stems from α ("carbon fibre $\rightarrow CO_2$ ")
 - considered to have the best potential for improvement

Thermal FE Simulation

- Thermal FE simulations are made with COMSOL® Multiphysics
- The most relevant components of the mechanics have been taken into account
- Pixel module development is finalized, production is going to start very soon
- Carbon fiber plate has been identified as only realistic parameter which can be optimized

Parameter	Meaning	Unit	Current standard value (estimated)	Reachable/realistic value
k_CF	thermal conductivity in x-y-direction	[W/mK]	~ 10	100
k_CFz	thermal conductivity in z-direction	[W/mK]	<< 1	0.5
h_CF	thickness of the carbon fibre plate	[µm]	350	550

Optimization of the Carbon Fiber Structure

• Various configurations have been simulated for a heat load of 7W

Improvements on the carbon fiber structure are promising for better thermal properties

New Thermal Mock-Up

Photos of the new mock-up

First Results with Optimized Configuration

Defined Ambient Temperature

RNTHAACHEN UNIVERSITY

- Measurements so far are done for qualitative characterization
- Next step: quantitative measurements will be done in defined ambient temperature

Cooling with silicon oil -20°C < T < 30°C, with huber chiller

Conclusions

- Low-mass design of detectors requires an involved cooling system
 - CO_2 cooling is a promising solution
- CMS phase-1 pixel detector uses CO₂ cooling system
 - Cooling of heat loads > 100W with only one thin cooling pipe
- Requirement for low material budget brings challenges
 - Ultra light-weight support structures, no massive cooling blocks
 - Small contact surfaces between detector and pipe
- Carbon fiber plates can be used as support structure
 - Optimization of thermal conductivity seems necessary for good performance
 - Improved carbon fiber plates promise better thermal characteristics

Additional Material

Measurements at -20°C

Specification CF

K13D2U COAL TAR PITCH-BASED CARBON FIBERS

TYPICAL PROPERTIES

Tensile Streng	ah 535 Ksi
Tensile Modu	ulus 135 Msi
Ult Elongatio	n .40 %
Yield	1360 yard/Lb
Density	2.2 g/cm ³
Electrical Resistiv	<i>ty 1.5 x</i> 10 ⁺ ohm m
Thermal Conduc	tivity 800 W/m K
Sizing Amount (H	Epoxy Type) 2 %
Number of Fi	laments 2 K
Filament Dias	neter 11 u
Twist	0 untwisted type
Carbon Content	over 99 %

Condition in pixel detector

- The pixel detector is filled with nitrogen
- Nitrogen pipes are parallel to CO2 cooling pipes → nitrogen temperature when entering the detector is expected to be equal to T_CO2
- 3 complete nitrogen volume exchanges per 1 hour \rightarrow cooling effect of nitrogen negligible
- Assume a module temperature of -4°C and good thermal insulation of the detector with respect to the external volume
 - Temperature (Nitrogen) approximately equal to module temperature

→ Idea:

- ➤ Construct a volume with an air temperature of about -4°C
- But keep cooling power which stems from air as low as possible
- Build a "fridge" which does not actively regulate the temperature of the air surrounding the pixel modules

Air and Wall Temperatures

- CO2 cooling operated at -20°C
- Air temperatures < 0°C degrees can be reached
- When applying heat load to the modules, the temperature rises about 2K
- Air temperature in the system is roughly constant

5 Mar 2015

8th Terascale Detector Workshop 2015, Max Rauch

Evaporation

• Applied preheating of up to 100W \rightarrow no change in temperatures observed

Thermistors on incoming and outgoing pipe

