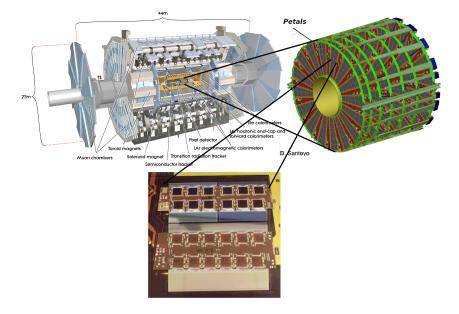
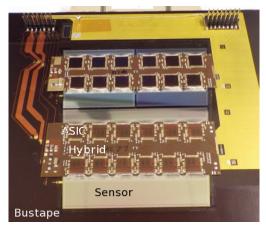
New Adhesives for the future ATLAS strip detector

Tony Affolder³, Ingo Bloch², Andrew Blue⁴, Sam Edwards⁵, Heiko Lacker¹, Luise Poley², Simon Pyatt⁵, <u>Dennis Sperlich²</u>, John Wilson⁵

Humboldt Universität zu Berlin¹, DESY², University of Liverpool³, University of Glasgow⁴, University of Birmingham⁵

Berlin, March 05, 2014




Dennis Sperlich (HU Berlin)

ATLAS Detector Upgrade

Dennis Sperlich (HU Berlin)

Where glue is used in modules (current defaults)

- ASIC → Hybrid (silver filled epoxy, TRA-DUCT 2902)
 electrical cunductivity → legacy
- Hybrid \rightarrow Sensor (unfilled epoxy, Fuller Epolite FH-5313)
- Sensor → Bustape (Al₂O₃ filled silicone gel, SE4445)

Dennis Sperlich (HU Berlin)

Room for improvement

O(12 h) curing time for all baseline glues

$\begin{array}{l} \text{TRA-DUCT 2902} \\ \text{ASIC} \rightarrow \text{Hybrid} \end{array}$

two-component glue

- 70-90 % (mass) silver
 - \rightarrow short radiation length X_0
 - \rightarrow high activatability
 - $\rightarrow \text{ corrodes less noble} \\ \text{ metals}$
- \rightarrow avoided by organic glue

 $\begin{array}{l} \text{EPOLITE FH-5313} \\ \text{Hybrid} \rightarrow \text{Sensor} \end{array}$

two-component glue

- viscosity depends on time passed after mixing
- very brittle after curing

 $\begin{array}{l} \text{SE4445} \\ \text{Sensor} \rightarrow \text{Bustape} \\ \text{two-component glue} \end{array}$

needs to be degased

Attacking most pressing problem: time

• Work mostly done on first step: ASIC \rightarrow Hybrid glue

Money

high number of tools + space

Increased temperatures

- stick with the baseline glue
- use same application method
- add heater to setup
- determine new curing time/temperature
 - ▶ *O*(2 h)
- Challenge: maintain precision during thermal expansion

Using UV curable glue

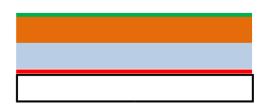
- select new type of glue
- find new glue application method
- add UV lightsource to setup
- determine new curing time
 - ► *O*(10 min)
- check radiation hardness, thermal/electrical/mechanical properties of new glue

Glue Application

Increased temperatures

- high viscosity glue
- application with stencil
- time consuming cleaning for every hybrid

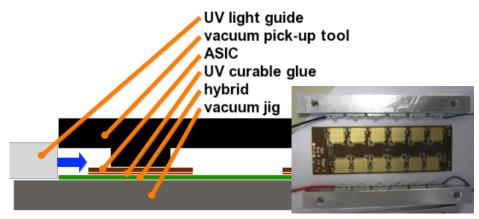
Using UV curable glue


- Iow viscosity
- application with µl pipette
- disposable tips \rightarrow no cleaning

Best solution for both: glue dispensing robot

Dennis Sperlich (HU Berlin)

Increased temperature curing (ASIC \rightarrow Hybrid)



hybrid vacuum jig Al plate heater glass plate

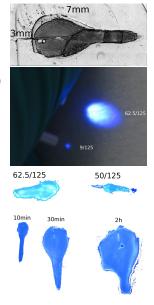
- a stack from glass plate + heater + aluminium plate below normal cluing setup
- ▶ heat to ~ 35 °C
- $\blacktriangleright\,$ after $\sim 2\,{\rm h}$ glue cured to a point where it can support ASICs

Dennis Sperlich (HU Berlin)

UV curing in current setup (ASIC \rightarrow Hybrid)

- default setup + UV light source
- only 80 µm gap (glue layer, red) available to shine in UV light
- ▶ UV glue under ASICs can be cured completely in *O*(10 min)

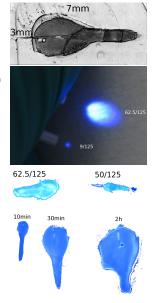
Dennis Sperlich (HU Berlin)


Fiber curing Setup (Module \rightarrow Bustape)

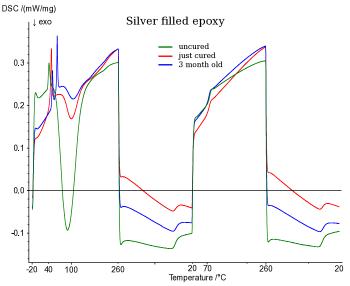
- for places not reachable from edge
- the same high power UV LEDs are used
- light is coupled into fiber by pressing connector onto LED (they have a flexible dome made from silicone)
- one LED per connector / fiber
- jacket and buffer needs to be stripped off to get to a 125 µm fiber
- 1. core ($\emptyset = 9 62.5 \,\mu \mathrm{m}$ glass)
- 2. cladding ($\emptyset = 125 \,\mu m$ glass)
- 3. buffer ($\emptyset = 250 \,\mu m$ plastic)
- 4. jacket ($\emptyset = O(1 \text{ mm})$ plastic)

Fiber curing Tests (Module \rightarrow Bustape)

- so far only tests with PVC foils done
- 125 µm spacing (pieces of fiber as spacers)
- after curing
 - separate foils
 - remove uncored glue
 - check amount of cured glue
- test whether light is actually conducted in core and not in the cladding
 - $\blacktriangleright \rightarrow \text{light is conducted in core}$
 - \rightarrow bigger core = more light
- Ionger times cures more glue and stronger

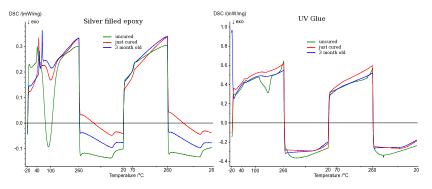

Fiber curing Tests (Module \rightarrow Bustape)

62.5/125


9/125

Fiber curing Tests (Module \rightarrow Bustape)

- so far only tests with PVC foils done
- 125 µm spacing (pieces of fiber as spacers)
- after curing
 - separte foils
 - remove uncored glue
 - check amount of cure glue
- test whether light is actually conducted in core and not in the cladding
 - \blacktriangleright \rightarrow light is conducted in core
 - ► → bigger core = more light
- Ionger times cures more glue and stronger


Thermal behaviour of glue

several glues measured with differential scanning calorimetry

Dennis Sperlich (HU Berlin)

Thermal behaviour of glue

- left plot shows still curing even after three month
- right plot (one UV glue) does not show any curing of previously cured glue
- ▶ both show glass transition temperature 60 °C 70 °C, but for silver epoxy it is more pronounced

Dennis Sperlich (HU Berlin)

Conclusion

- the problem of reducing the modul production time / (# of tools) was approached with heat accelerated curing and UV curing glues
- UV curing has several advantages:
 - faster, even than heat accelerated curing
 - less cleaning (manual work = time)
 - less material in detector
 - cheaper glue
- many questions of UV glue are resolved (see Luise's talk from last year)
 - curing
 - radiation hardness
 - thermal cycling
 - shear strength
 - ▶ ...
- no show stopper for use in ATLAS detector