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Searches usually do a two-hypothesis test (point hypotheses):
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Hy: only background is present in the data

H, : signal+background is present in the data

These are point hypotheses Snot depending on parameters which
could be fitted from the data

Note that other hypotheses like:

- my background description is wrong
- my detector is not performing as the simulation

describes it
- my reconstruction is not as efficient as I thought

are usually not explicith included although eliminated as
much as possible by the experimentalists before calculating

confidence levels
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The guestions to aslx

We usually can easily calculate:
P(data B) = P(data| H,)
P(data |S + B) = P(data | H,)
i.e. the probability that the data originates from a background

only or from signal + background processes. However, we
usually would like to know:

P(S + B| data) = P(H, | data)
i.e. the probability that the signal is present in the data

Note: P(H,|data) and P(data|H;) are NOT THE SAME !
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The guestions to aslx

The answer lies in
P(H,)
P(data)

P(H,) is called prior probability (before looking at an
experiment’s data) for the hypothesis H;

P(H, |data) = P(data | H,)-

The choice of P(H,) is not unique:
Can include information from previous experiments
Could be chosen as flat

Can be used to exclude non-physical regions (e.g. zero for
theories with negative masses)

Influences P(H,|data) !


http://en.wikipedia.org/wiki/Bayes_theorem
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In practice, we're faced with four possible situations:

Actual Background only Signal + background
situation Presentin the data present in the data

Our
conclusion

(True) False exclusion of
Claim exclusion of signal / missed
St Feline) @il signal discovery

(accept Hy)
Type I error (a)

Typically 5% (20)

Claim -
background + | False (True) discovery
signal discovery

ject Hy,
é::eg:st H,) Type II error (B)

Typically 5.7-107 (50)



The likelllhooo ratlio ane wihy It is optinnal

_ False discovery rate
Given:

two point hypotheses H, and H, fno free parameters !)
the (fixed) probability a of a/type I error a

Minimal missed
Neyman-Pearson states that discovery rate

The most powerful (i.e. with minimal type II error) test is a
likelihood ratio test:

L(d |H
Q — ( | 1)> 1l — reject Hy (and accept H,)

L(d[H,)

where 77 is determined by the choice of a



http://en.wikipedia.org/wiki/Neyman-Pearson_lemma

The likellhooa ratio ane wihy [t Is eptinal

Likelihood ratio:

o L(d|h) L(d|S+B)

L(d|h,)  L(d]|B)

where the likelihood is the product of the probabilities of all
observations.

For binned distributions, the likelihood is (for background):

Ld|B)= ]2

iebins di -

i.e. the product of the of observing di
events when bi events are expected
The product runs over all bins, channels, experiments etc.


http://en.wikipedia.org/wiki/Poisson_distribution
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The likelihood ratio and why it is optimal

- Often, the log of the likelihood ratio is used: X = —2 |nQ

side effect: X becomes a AZZ in the (Gaussian) limit
of large statistics

« Properties of Q and X:

Type of Values of Q | Values of X

SIG+BG BG like

experiment like
al outcome
= =)
Very Much smaller Very positive
background than one
like
Very signal+  Much larger Very >
background than one negative

||ke X= 'ZInQ




Number of Likelihood
observed ratio Q

events
1.63-108

4.00-10-1°
1.80-10"%

3.62-10°17

PT Miniworkshop, June 19 2008 Limit Determination



observed Observed Distribution Likelihood
ratio Q

M signal

12

—e-data

10

13 E — 5.92:103 10.3

8
6
4
2

00 05 1 15 2 25 3 35 4 45 5

21 12 — background 8-92102 _13-6
- M signal
e T

00 05 1 15 2 25 3 35 4 45 5

PT Miniworkshop, June 19 2008 Limit Determination 11




—~) = die & > .
conric@nce levels

We now have an optimal ordering rule (i.e. according to the
likelihood ratio) of experimental outcomes

We now can ask the question:

How significant is the observation ?

Or more concrete:

What is the probability that a
background only process
generates a fluctuation that is

more signhal+background like than
the data ?



T P assale
Confidence levels
What is the probability that a background only process

generates a fluctuation that is more signal+background like
than the data ?

X(data)

p(X)

all possible outcomes
from a background-only
process

SIG+BG BG like
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Terminology used by the LEP Higgs WG:

CL,:

1_CLb:

probability that a background only experiment
yields an outcome which is as S+B like or less
S+B like as the data

probability that a background only experiment is more
S+B like than the data

In terms of counting experiments: probability that
one observes more events than the data in a
background only experiment

1-CL, = 0.5 for the median background outcome

1-CL, small for signal+background like outcomes
e.g. 1-CL, = 5.7-107 corresponds to a significance of 50

1-CL, is used to discover signals
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Terminology used by the LEP Higgs WG:

CI-s+b:

probability that a signal+background experiment
yields an outcome which is as B like or less
B like as the data

In terms of counting experiments: probability that
one observes the number of events seen in the data
or less than that in a signal+background experiment

(how often does signal+background underfluctuate
such that it looks like my data ?)

CL.,p, < 5% — it's quite unlikely that signal+background
produces so few events as | saw in the data

CL.,, can be used for exclusion of a signal (e.g. when
CI-s+b < 5%)



Coniicence levels
SIG+BG
like

F—

BG like

—

all possible outcomes

from a background-only
process

3

Q.
all possible outcomes
from signal+background
Processes




S I S = 2
W}//pg 4 @inN@ CYyoE L @Irirolrs

In practice, we're faced with four possible situations:

Actual Background only Signal + background
situation Presentin the data present in the data

Our
conclusion

(True) False exclusion of
Claim exclusion of signal / missed
background only - .
(accept Ho) signal discovery
Claim .
background + _False (True) discovery
signal discovery

(reject Hy,
accept H,)



rreguentist calculation of conficence levels

How do we get the background and signal+background
distrubutions of -2 In Q ?

Remember definition of probability:

Probability = relative frequency (of an outcome) in a large
number of trials.

With sufficient amount of CPU power:

simulate a large number of experimental outcomes (throw
Poisson numbers for each bin of background and
signal+background expectation)

Include systematic uncertainties b varYing e.g. the expected
background before generating each tria

- arbitrarily complex correlations can be done
treat each trial exactly the same way the data is treated
- E.g. fit background from data in some channels etc.

Count the number of simulated outcomes which satisfy the
criterion for which one wants to calculate the probability
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Canoeloate welghts

One can rewrite the log likelihood ratio in the following way:

Signal to background
ratio in bin i

X =-2InQ=-2) |—s;+{d;)In 120

iebins !

Number of data
events bin i

Scan/visualize most significant events (highest local s/b) and
show them at conferences !

WARNING: People get attached to these events and will
remember them after you have modified your detector
simulation/physics simulation/analysis !!



Liinnlits on palrametelrs
So far, we had two point hypotheses:

Hy: only background is present in the data

H, : signal+background is present in the data

If we want to test for Higgs production, the signal efficiency
and the distributions used to test the hypotheses strongly
depend on the Higgs mass

— Straightforward approach:

For each Higgs mass in question, repeat the hypothesis
test

Can become computationally intensive if more than one
parameter (e.g. m, and tan ) need to be scanned
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The CL. metho:

Ol

Example (counting experiment):
Expected background: 100 events
Expected signal: 0.5 events

Could one discover a signal ? (Is one sensitive to it ?)

Clearly not (the signal is much smaller than the statistical
uncertainty on the background alone).

Assume one observes: 80 events in data
Can one exclude the signal at 95% CL ?

Yes, CL,,,=2% despite no sensitivity to the signal !
— this is clearly not a desirable feature



The CL. methoad R

‘Underfluctuations’ can e.g. come from:

Underestimation of the detector efficiency (detector
simulation too optimistic)

Choosing cuts (a posteriori) in order to remove ‘unwanted
events’

To protect agains this, do the following:

for counting experiments ( n events observed):
Count fraction of signal+background experiments with
less than n but consider only those signal+background
experiments where the contribution from background is
less than n.

CLs+b

more generally: use CL, = <3% jnstead of CL +5<5%
s+b

I—b
(in the previous slide: CL.,,=2%, CL,=89%)

Note: This gives more conservative limits !


http://www.slac.stanford.edu/spires/find/hep/www?j=JPHGB,G28,2693

Tevatron Higgs sealches

Combined CDF and D@ Upper Limits on Standard-Model
Higgs-Boson Production (April 10, 2008 / "Winter 2008
Combination prepared for hep-ex.", with L=1.0-2.4 fb'1),

Uses two methods (giving the same results within 10%):

- Modified CL, method to include e.g. fitting the background
from data

- Bayesian method: Integrate

L(R,g, 6 | ﬁ, é) . 7[(5) — H H /uIJIJ He_gk /2

iechannels jebins 'j - kenp



http://arxiv.org/abs/0804.3423

Tevatiron Higgs sealrches

|

‘nuisance’ (unknown) Probability
parameters, typically densities for
with an uncertainty nuisance
parameters
Signal scaling N
factor Hij = =Rs; (‘9)"' bu (‘9)

LREDIARG) - 7@) = T] T1 e IIe—ek/z

iechannels jebins nii - kenp

Observed data

Poisson Probability

Expected background in bin j of channel i

distributions

Expected signal distributions
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Tevaltiron nloos sealrcines

Assume a flat prior for the total number of selected Higgs
events

Integrate over all parameters except the relative signal rate R
and normalize to obtain the probability p(R|observed data)

Set the limit Rys on the relative signal rate R by requiring:

R95

j pP(R | observed data)-dR = 0.95



Linniit calculations in ROOT

Frequentist “with Bayesian treatment of uncertainties in
nuisance parameters”

© supports inclusion of (correlated) systematic
uncertainties

© arbitrary number of bins — combination of different
channels, experiments etc. without losing sensitivity
straightforward

® might need a large number of MC trials, especially when
it comes to high significances

® Conclusion of whether a limit is derived or a signal is
claimed is left to the user (does not come naturally out
of the method)

This is essentially what has been used at LEP for Higgs
searches


http://root.cern.ch/root/html/TLimit.html

Sunnin@lry

The method used at LEP to calculate limits on the mass of the
standard model Higgs boson (and for constrained MSSM
models) was presented

At Tevatron and LHC, the situation is somewhat different due
to the fact that the uncertainties on the background are much
more important than at LEP

Lets hope for (large) signals
at the LHC and ILC so we
don’t need to set limits !
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Cross saction

For cross section limits, introduce a cross section scaling
factor as another parameter

Repeat confidence level calculations for several scaling factors
until the exclusion condition (e.g. CL.,, = 5%) is reached



Tihe prorile likellhooa methoao

Rolke et. al. studied the profile likelihood method for limit and
two sided intervals (*errors’) for an experiment with:

a signal dominated bin to which background contributes

A background only bin Fit the nuisance

Uncertainty on the signal efficiency parameters 0, leave
model parameters 1
Idea: Given free

sup{Likelihood(r,, & | data) }

A, |data) ==C———
sup{Likelihood(r, @ | data)}
O,

Overall best fit of
nuisance parameters
0, and model
parameters m
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2
-2 log A has approximately a ¥ distribution

Therefore we can look for ﬂ_cl;nin which gives the minimal

L . =-2log A(z™0)

min o

and set the interval boundaries / limits where | — Lmin +C

For certain forms of signal, background and efficiency, one
can get analytical results

Some care is needed for special cases (e.g. number of
observed events in signal bin is less than the number of
expected background events)

In their paper, they have found good coverage for the method



Linniit calculations in ROOT

Based on profile likelihood method, fully frequentist

© includes uncertainties in nuisance parameters
© seems not to generate MC trials (— fast) despite

frequentist method
@ Only for a (limited) scenario of a signal and a
background (counting) region

Fully frequentist construction

© solves the problem of undercoverage due to flip-flops
between exclusion and measurement

@ does not handle uncertainties in nuisance parameters
(e.g. background rate)


http://root.cern.ch/root/html/TRolke.html
http://root.cern.ch/root/html/TFeldmanCousins.html
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When does one go from limit setting (one-sided intervals on
parameters) to two sided intervals (measurement of a
parameter) ?

True value of

Example policy: parameter
If the result x is less then 3, 1 U S —
will state an upper limit from the | ¢ Ve
standard tables. If the result is " 2=
greater than 3, I will state a sk /

V4

central confidence interval (90%)
from the standard tables.”

Mean U

/

L1 11 L1 11 L1 il | I | L1 il L1l
-2 -1 & 1 v 3 4
Measured Mean x

Measured value
of parameter
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Problem:

If true value of the parameter is
u=2, then for only in 85% of
experiments y=2 is in the quoted
interval

i.e. P(x |

This should be 90% by
construction !

This effect is called undercoverage

©
_'VO‘

Mean U

1
LT TTIT MTTTJTTI1

True value of
parameter

AW

N

A

859

-1

U

1

Measured Mean x

Measured value
of parameter
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Solution (Feldman & Cousins '97):

use of an ordering principle of the possible measurements
(event counts n) according to:

R(N) = P(n| x)
P(n | :ubest)

include n (in decreasing order of R) into interval until the
sum of P(n|u)is 290%

This removes undercoverage by construction and gives a natural
way when to switch from one-sided (limits) to two-sided intervals

(measurement)
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http://preprints.cern.ch/cgi-bin/setlink?base=cernrep&categ=Yellow_Report&id=2000-005
http://preprints.cern.ch/cgi-bin/setlink?base=cernrep&categ=Yellow_Report&id=2000-005
http://preprints.cern.ch/cgi-bin/setlink?base=cernrep&categ=Yellow_Report&id=2000-005
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LEP Higgs WG: ‘Searches for Higgs bosons: Preliminary
combined results using LEP data collected at energies up to
202-GeV/, , Appendix A:

Describes the confidence level calculation used by the LEP
Higgs WG in less than three pages

Kyle Cranmer: " Statistical Challenges for Searches for New
Physics at the LHC' (Proceedings of PhyStat2005),

Review of methods used in the past and for the LHC


http://www.slac.stanford.edu/spires/find/hep/www?r=CERN-EP-2000-055
http://arxiv.org/abs/physics/0511028

Glossalry

(a):
rejecting a null hypothesis (e.g. only background present in the data) when it is actually
true
" False positive’, ‘False discovery’

(B):
failing to reﬂ']ect a null hypothesis (e.g. only background present in the data) when the
alternative hypothesis is true

" false negative’, ‘False exclusion of new physics’

of a hypothesis test:
probability that a test will reject a false null hypothesis

1 — probability of type IT error =1 - 8

is 100% in the ideal case (i.e. a type II error can not happen)

Coverage of a hypothesis test:
probability that a test will accept a true alternative hypothesis (????)

1 - probability of type I error =1 - a

Undercoverage:

Coverage is less than the method claims it to be, i.e. type | error (missed discovery rate) larger than
claimed (??7?7). Example: The limit at 95% confidence limit is in fact only a 93% confidence limit.


http://en.wikipedia.org/wiki/Type_I_and_type_II_errors#Type_I_error
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors#Type_II_error
http://en.wikipedia.org/wiki/Statistical_power
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A parameter which is not of immediate interest but must nevertheless
be accounted for

e.g. amount of background estimated from the data
Test statistic:

A function which summarizes the outcome of an experiment (typically
in a single real number).

Typically used to order outcomes of (monte carlo) experiments
Example: A function which gives

very negative values if data signal+background like,
very positive values if data is background like

probablllty of obtaining a value of the test statistic at least as extreme
as the one that was actually observed, given that the null hypothesis
Ebackground onIyQ is true

‘how often would I get a deviation from the expected background
larger than the one I saw in my data ?')

Examples: CL.,,, CL,, X?upper tail probability


http://en.wikipedia.org/wiki/Nuisance_parameter
http://en.wikipedia.org/wiki/P-value

@)

of a parameter:

Integrate (a conditional probability) over this parameter
(i.e. consider all possible choices for this parameter and
their respective probability)


http://en.wikipedia.org/wiki/Marginalization_(probability)
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