Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	0000	000	0000	000	00

Axion bound from globular clusters

Adrian Ayala University of Granada/University of Rome Tor Vergata in collaboration with Inma Domínguez (PhD advisor), Maurizio Giannotti, Alessandro Mirizzi, Oscar Straniero (PhD advisor)

December 2, 2014

Adrian Ayala Axion bound from globular clusters

Phenomenology	Constraints	Our approach	Conclusions

Overview

- 2 Phenomenology
- 3 Constraints
- 4 Our approach: constraints from R parameter
- 5 Upper and lower bounds

6 Conclusions

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
●00	0000	000	0000	000	
Axions					

Axions and strong CP violation problem in QCD

- Axion: scalar particle proposed to solve strong CP problem in QCD
- \blacksquare QCD lagrangian has a CP violating term, related to a phase angle θ

$$\mathcal{L}_{ heta} = heta rac{g^2}{32\pi^2} G_{\mu
u a} ilde{G}^{\mu
u a}$$

 CP violating term should produce a non-vanishing electric dipole moment of neutron

$$\begin{split} d_n &= \frac{e\theta m_q}{m_N^2} \\ \text{But electric dipole moment of the neutron} \\ \text{is} \\ d_n &\leq 0.29 \times 10^{-25} e \cdot cm \implies \theta \leq 10^{-11} \ (?!) \end{split}$$

Adrian Avala

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
0●0	0000	000	0000	000	00
Axions					

Pecci-Quinn mechanism

• Why is θ so small?

Pecci and Quinn proposed a new global symmetry $U(1)_{PC}$, broken dynamically

Symmetry breaking keeps CP violation below a small value

$$\mathcal{L}_{ heta^{\prime}} = \left(heta - rac{m_a}{f_a}
ight) \mathcal{G}_{\mu
u a} ilde{\mathcal{G}}^{\mu
u a}$$

 Particle associated, a Nambu-Goldstone boson was named axion by Frank Wilczek

Adrian Ayala

Axions	Phenomenology	Constraints	Our approach	Conclusions
000				
Axions				

Cosmological relevance

- Axions can acquire mass by pion coupling
- Depending on mass values axions can be a suitable dark matter candidate or not
- mass $\sim \mu eV \implies$ cold dark matter: Bose Einstein Condensate
- mass ~ *meV* ⇒ hot dark matter produced during QCD transition. Disfavoured by cosmic large scale structures
- For QCD axions, it holds $\frac{m_a}{f_a} \sim \frac{m_\pi}{f_\pi}$. f_a related to $\sim 10^{12}$ GeV scale.

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	●000	000	0000	000	
Phenomenology					

Axion interactions with quarks and leptons

- We can consider models where axions interact only with hadrons or with both hadrons and charged leptons
- In KSVZ model axions interact neither with charged leptons nor lighter quarks, only with heavy quarks
- In DFSZ model axions interact with both, charged leptons and hadrons, by means of Compton, Primakoff and Bremsstrahlung

Axions 000	Phenomenology 0●00	Constraints 000	Our approach 0000	Bounds 000	Conclusions
Phenomenology					

Primakoff effect

 Coupling to photon by Primakoff effect is a general property of axions and axionlike particles

- "Light shinning through the walls" experiments
- Direct production of axions in stellar plasma
- Astrophysical evidence: universe transparency to high energy gamma rays, cooling rate of white dwarves

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	00●0	000	0000	000	00
Phenomenology					

Axion direct detection experiments

 Conversion in photons of sun produced axions, in presence of a magnetic field (CAST: Cern Axion Solar Telescope)

Axion conversion in microwave photons in resonant cavities.
 ADMX (Axion Dark Matter eXperiment).

Adrian Ayala

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	000●	000	0000	000	00
Phenomenology					

Indirect search. Stellar evolution

- Axion production in stellar interior \implies Primakoff effect
- Axions interact weakly with matter and escape freely from stars, carrying energy
- \blacksquare Energy loss influence stellar evolution \implies constraints from stellar evolution
- Globular Cluster Isochrones.

Adrian Ayala

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	0000	●00	0000	000	
Constraints					

Axion space parameter. Excluded regions.

Adrian Ayala

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	0000	○●○	0000	000	
Constraints					

Primakoff effect and axion emission along horizontal branch stars

- Primakoff effect is $\propto T^7$. HB cores temperature about $(10^8 K) \implies$ axion rate significant
- \blacksquare Energy loss \implies nuclear reactions rate increases \implies time spent in HB phase reduces
- This can be tested \implies R parameter

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	0000	00●	0000	000	00
Constraints					

R parameter

- R = <u>Number of HB stars</u> <u>Number of RGB stars brighter than V_{ZAHB}</u>
 V_{ZAHB}= "Zero age horizonta branch V magnitude"
- V_{ZAHB} = "Zero age horizonta branch V magnitude" interpolated to log T_{eff} = 3.85
- R also equals $\frac{t_{HB}}{t_{RCB}}$
- R parameter affected through axion emission in HB phase, which decreases t_{HB}. t_{RGB} remains unchanged if helium is more or less the same______

Adrian Ayala

Axions 000	Phenomenology 0000	Constraints 000	Our approach ●000	Bounds 000	Conclusions 00
Our approach					

Observations. R parameter and Y

- We obtained average *R* parameter from a 39 GGC sample (Salaris et al, 2004). [*M*/*H*] < −1.1 to avoid "RGB" bump. Unique Helium abundance.
- Y determination from Izotov et al, 2013, low metallicity H_{II} regions
- \blacksquare We use central average values and σ error values to find upper and lower bounds
- $\blacksquare R = 1.39 \pm 0.04, \ 1\sigma$
- $Y = 0.255 \pm 0.003 \ 1\sigma$

Axions 000	Phenomenology 0000	Constraints 000	Our approach ○●○○	Bounds 000	Conclusions 00
Our approach					

Simulations. FUNS code

 Axion or ALP up to few keV can be produced in stellar plasmas, by means of Primakoff effect (photons in presence of external electric fields)

 We include axion emission in FUNS, taking into account ion and electron screening effect and electron degeneracy, following Raffelt & Dearborn (1987)

$$\epsilon \propto g_{a\gamma\gamma}^2 rac{T^7}{
ho}$$

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	0000	000	00●0	000	00
Our approach					

Simulations. FUNS code

- Accurate stellar evolution considering full nuclear network and neutrino effects. Axions considered as an effective energy sink
- Full evolutionary tracks and HB and RGB times for a single $0.85M_{\odot}$, Z = 0.001 star.
- Helium mass fraction homogeneity, RGB and HB branches populated enough
- Evolutionary times t_{HB} and $t_{RGB} \implies R_{th}$

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	0000	000	000●	000	00
Our approach					

R parameter as a $g_{a\gamma\gamma}$ and *Y* function

$R_{th}(g_{a\gamma\gamma}, Y) = 6.26Y - 0.41g_{10}^2 - 0.12$

- g_{10} is coupling constant in 10^{-10} GeV⁻¹
- Parabolic dependency on g, linear on helium
- Degeneracy between g and R ⇒ Y knowledge important to constrain axion-photon coupling

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	0000	000	0000	●00	00
Bounds					

 $g_{a\gamma\gamma}$ constraints

- Previous upper bound by Raffelt & Dearborn (1987), based on HB supression, g_{ayy} < 10⁻¹⁰ GeV⁻¹
- Giannotti et al (2013) $g_{a\gamma\gamma} < 0.8 \times 10^{-10} \ {
 m GeV^{-1}}$
- \blacksquare Our upper bound $g_{a\gamma\gamma} < 0.66 \times 10^{-10}~{\rm GeV^{-1}}$, 95% c. l.

Adrian Ayala

	Phenomenology	Constraints	Our approach	Bounds	Conclusions
				000	
Bounds					

$g_{a\gamma\gamma}$ upper and lower bound

- = $g_{a\gamma\gamma} < 0.66 imes 10^{-10} \ {
 m GeV^{-1}}$, 2σ R and Y variations
- Compatible with bound Y < solar helium mass fraction
- We can not exclude $g_{a\gamma\gamma} = 0$
- Better Y determination needed

Adrian Ayala

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	0000	000	0000	00●	00
Bounds					

Model Uncertainties

- Nuclear reaction rates
- Convection
- Interpolation to ZAHB temperature

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	0000	000	0000	000	●0
Conclusions					

Conclusions

- We obtain the strongest $g_{a\gamma\gamma}$ upper bound till now
- We can't discard $g_{a\gamma\gamma} = 0$ (\implies no axions) as lower bound at 2σ
- Y uncertainty remains important, specially for the lower bound

Axions	Phenomenology	Constraints	Our approach	Bounds	Conclusions
000	0000	000	0000	000	
Conclusions					

Work in progress

- Synthetic isochrones to avoid ZAHB temperature interpolation error
- Monte Carlo study of uncertainties due to nuclear reaction rates and convection
- Extension to other stellar evolutionary phases: RGB, massive stars, ... and study of other particle constraints: "milicharged particles", hidden photons, WIMPs