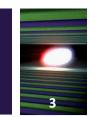


Calibration Infrastructure and Calibration Working Group

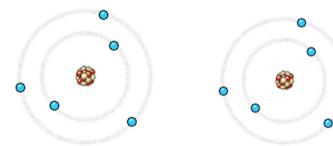
Jola Sztuk-Dambietz (XFEL) on behalf of the European XFEL Calibration Group

December, 9th 2014 17th Meeting of the XFEL Detector Advisory Committee European XFEL GmbH, Hamburg

XFEL Outline

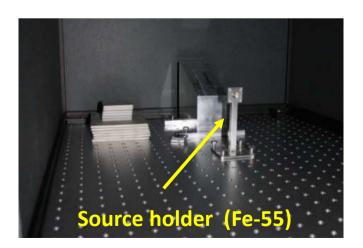


Introduction


- Infrastructure for detector calibration and tests at the XFEL status and plans
 - Little Amber (Ambient X-ray Test Setup for Small Prototype Detectors)
 - Pheobe (Fe-55 Multi-Purpose Vacuum Test Setup)
 - Big Amber (Ambient X-ray Test Setup for 1/4 Mpx detectors)
 - PulXar (Pulsed Multi-Target X-ray Test Setup) and PANTER
 - Reference SDD detector
- Calibration schedule and plan status

Summary

Status of Laboratory Calibration Infrastructure

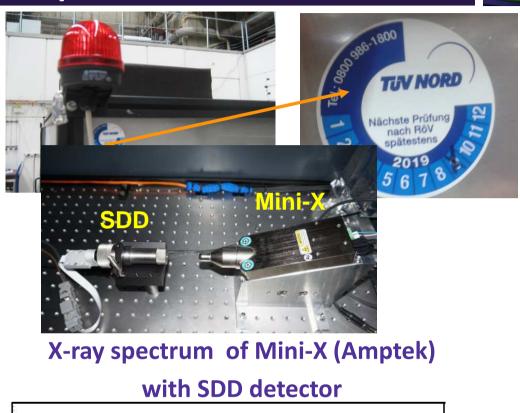


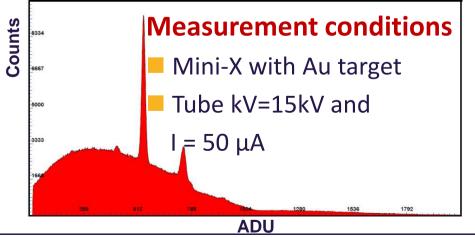
XFEL Portable Detector X-ray Test Stand – Little Amber

- Movable ambient test stand for calibration and test of detector prototypes
- Housing (3mm SS+ 1.5 mm Pb) was designed to be compliant to different types of X-ray source (rad. isotopes, portable low power X-ray tubes)

X-ray sources:

- Fe-55 (A = 1,85 GBq)
- Low power X-ray tubes: Amptek Mini-X with Au and Rh targets (I< 80 μA, V< 50kV)

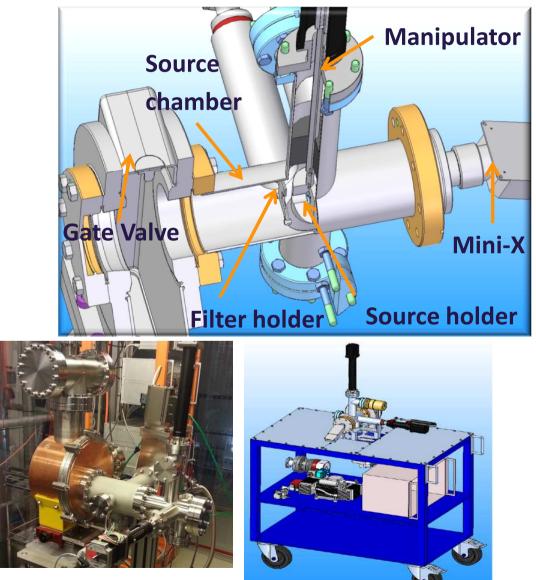

XFEL Portable ambient X-ray Setup - Little Amber

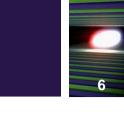

Status since the last XDAC:

- Ventilators and interlocks installed
- Approved by TÜV in September and HH authority in November for operation with low power X-ray tubes - Mini-X with Au and Rh target

Next Steps:

Temperature sensors to be installed

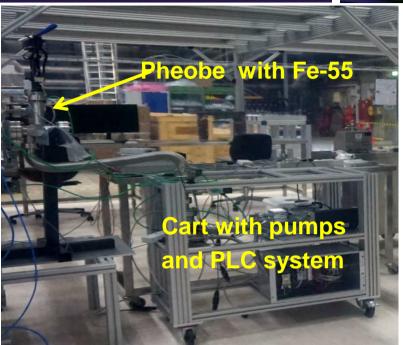

European

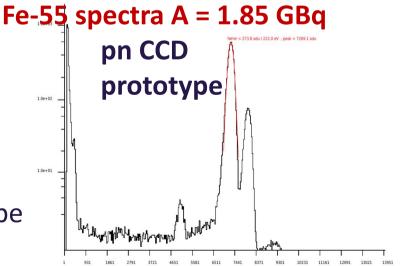

XFEL Vacuum compatible X-ray setup PHEOBE

Modular flexible device for multipurpose usage (filters, pin-holes, collimator, etc..) with independent pumping system \rightarrow can be separated from the tested detector via shutter

X-ray sources:

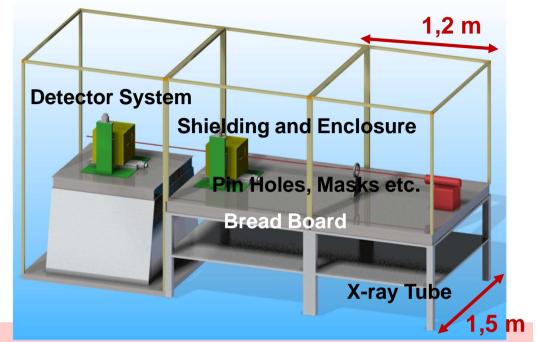
- Fe-55 (A = 1,85 GBq)
- Low power X-ray tubes: Amptek Mini-X with Au target (I< 80 μA, V< 15kV)


Vacuum compatible X-ray setup - PHEOBE


Status since the last XDAC:

- Operational with radioactive source (Fe-55)
- First measurements with pnCCD
- Cart assembled
- PLC: Firmware for control of valves, pumps and manipulators installed

Next steps:

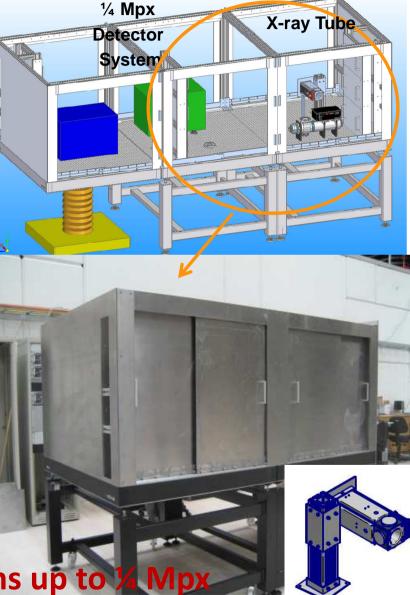

- Install filters
- Test/commissioning control system
- GUI for pump system
- Commissioning of the setup with PLC , motor position calibration
- Next use-cases: SDD detector and fastCCD
- Extension of the system with portable X-ray tube \rightarrow Q1/Q2 2015

European XFEL MP-75 Detector Development Permanent Ambient X-ray Test Setup – Big Amber

- Modular setup for large area and small area detectors
- Interlock system with safety sensors on the doors and between the modules

X-ray sources:

- Commercial high power X-ray tubes: (V < 60 kV and P < 2 kW), anodes: Cu (8 keV) and Mo (17 keV) + Polycapillary focusing optics → estimated intensity for Cu target 10⁹ cps/50µm
- PANTER source with exit window (V < 15kV, I < 5mA) multi-target anode</p>
- PulXar with exit window: pulsed mode (V< 50kV, I<20mA with pulse length > 25 ns and XFEL timing), DC mode (V<60kV, I<5mA), multi-target



Permanent Ambient X-ray Test Setup – Big Amber

Preliminary setup with first two modules (big enough for ¼ LPD and AGIPD single module) Status since the last XDAC:

- Shielding assembled
- Interlock system defined (extended for use with electron gun and PANTER) \rightarrow installation ongoing
- Documentation for TÜV approval exists → discussed with Safety group
- X-ray tubes will be delivered in January including housing, collimator, HV - generator and cooling
- Tube support exists
- Offer for optics and optic holder exists
- Requirements for the 3rd module are defined

→ Operational Q1 2015 for detector systems up to 1/2

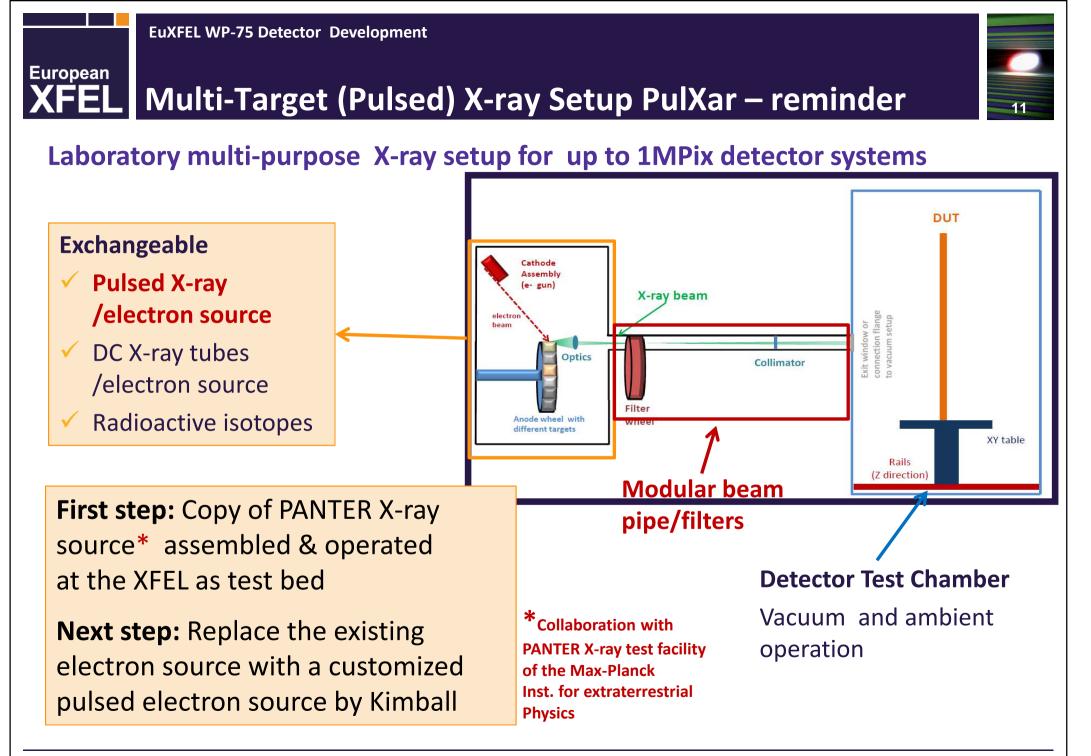
European XFEI

Permanent Ambient X-ray Test Setup – Big Amber

Next steps (two modules):

- Install moving stages for tube (200 mm travel, position resolution: 10 μm)
- Install interlock system
- TÜV approval

Preliminary cooling (ventilation) for the 2 module setup to be installed (heat dissipated to air of ¼ LPD ~2kW)


- Housing for N₂ atmosphere for AGIPD single module
- Commissioning of the X-ray tubes

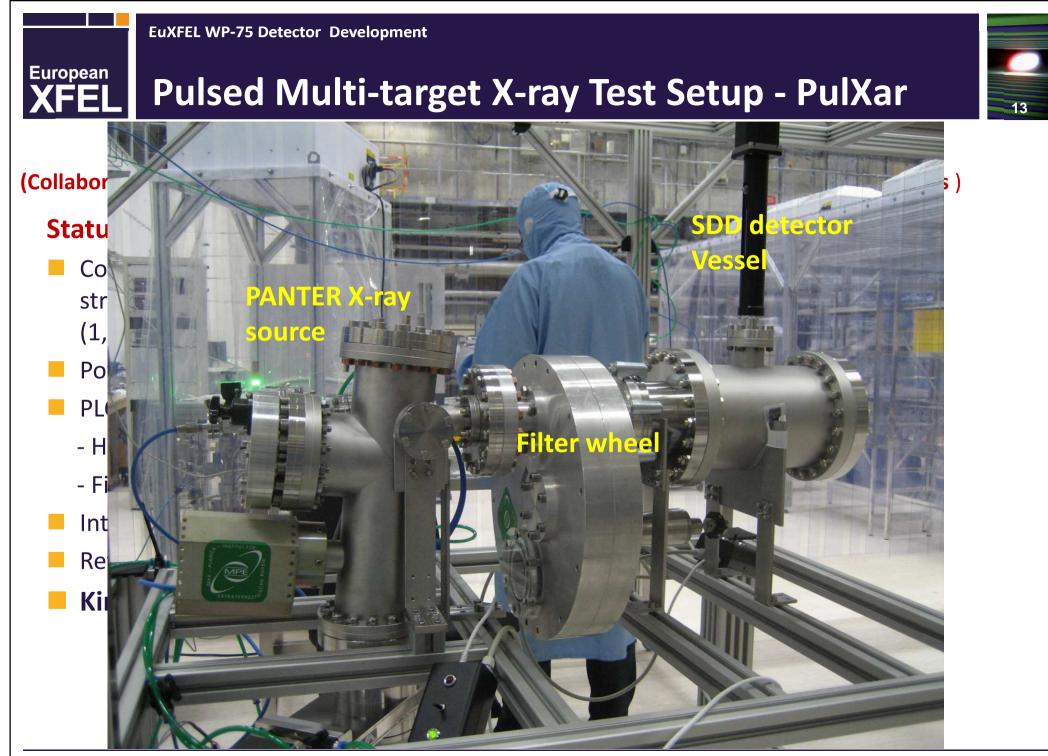
Further steps – final (three-module) setup:

- Finalize design of the third module
- Focusing optics (focus sizes of <50 μm) from IFG with holders attached to the tube housing
- Moving stage for detectors to be installed

Water cooling for the 3rd module necessary, ventilation not feasible in the clean room laboratory at XHQ

10

European **XFEL**


Pulsed Multi-target X-ray Test Setup - PulXar

12

PANTER X-ray source as a testbed towards a pulsed sources

Status since the last XDAC:

- Complete PANTER system including tube, filter wheel, detector vessel, support structure and pumping system assembled and pumped (<1.0 x 10⁻⁶ mbar → sufficient for PANTER operation)
- First bake-out of the filament was successful
- Control system:
- Power supplies for PANTER integrated and functionality was tested
- ✓ PLC Control system (pumping system + manipulator for detector)
 - Hardware ready
 - Firmware was installed last week \rightarrow to be tested
- Interlock system for the tube installed \rightarrow to be tested next week
- Reference detector setup exists (fast SDD + vacuum vessel + manipulator)
- Documentation for TÜV exists \rightarrow under discussion with Safety Group

December 9th 2014, Hamburg

European XFEL

Pulsed Multi-target X-ray Test Setup - PulXar

14

Next steps - PANTER:

- Commissioning of the PANTER tube system with HV < 5kV</p>
- TÜV approval
- Commissioning for up to 15 kV
- \rightarrow Operational Q1 2015

Next steps - PulXar :

- Replace PANTER e- source with the Kimball e- gun → electron gun delivered to XFEL.EU
- Synchronization of the electron gun with XFEL timing system
- Commissioning of Kimball e- gun

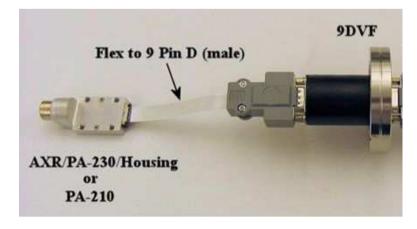
\rightarrow Operational with PANTER mechanics Q2 2015

EuXFEL WP-75 Detector Development Reference detector for characterization of X-ray sources

Reference detector for characterization and measurement of spectral distribution of X-rays emitted by the X-ray sources

Status:

European


- SDD detector including collimator with pinholes (25-2000 μm) delivered
- Vacuum tests with detector collimator and feed through: 4 x 10⁻⁷ mbar
- Movement system for vacuum operation
- SDD detector operational

Next steps:

- Detailed tests and calibration with X-rays (PHEOBE setup and/or Mini-X)
- Synchronization of the detector with XFEL timing (needed for PulXar)

- 160 eV FWHM resolution @ 5.9 keV and 100ns peaking time
- Peak-to-Background Ratio 20,000:1
- High Count Rate > 10⁶ cps
- **2**5 mm² X 500 μm

EuXFEL WP-75 Detector Development HERA South Detector Laboratory May 2014

Clean room and Detector Lab Space at HERA South – 1st floor

Clean room ISO Class 6

European

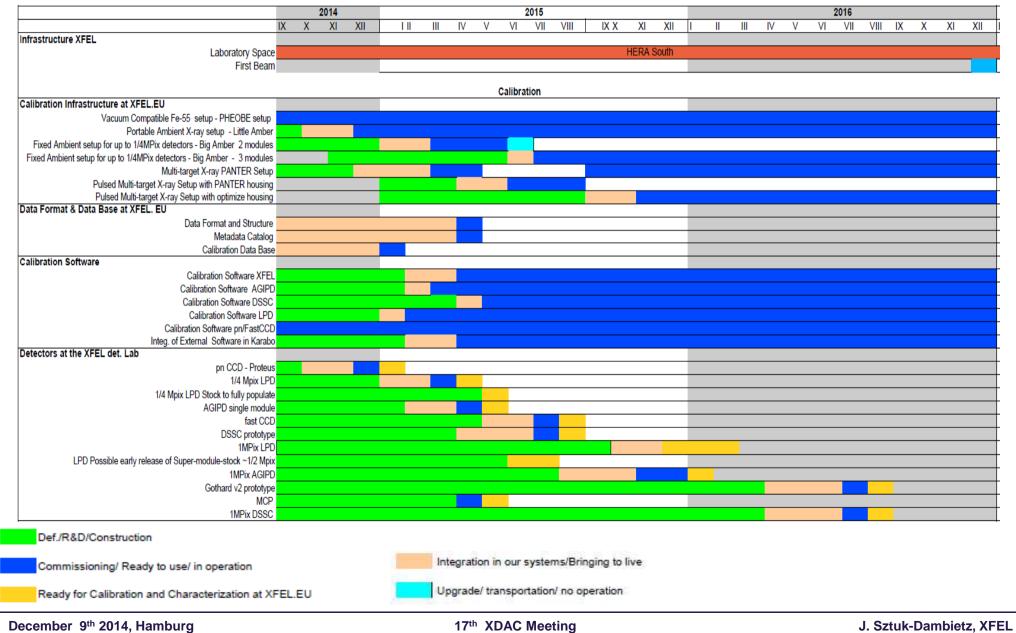
EuXFEL WP-75 Detector Development HERA South Detector Laboratory November 2014

Clean room ISO Class 6

Clean room and Detector Lab Space at HERA South – 1st floor

December 9th 2014, Hamburg

European


EuXFEL WP-75 Detector Development Calibration Plan & Schedule for Lab. Infrastructure at XFEL.EU

- First (preliminary) version of Calibration/Characterisation plan and schedule for the XFEL Laboratory Test Infrastructure exists
 → discussed with the Detector Consortia at the last Calibration Meeting
- In general the Consortia are interested to use our infrastructure
- Constant feedback from the Consortia is needed → What are their plans & schedule for calibration and testing of the full detector system in our Laboratory? → shall be worked out together with the corresponding XFEL contact persons

European

European Calibration Schedule - General Plan XFEL

19

European XFEL

First X-ray tests in the Detector Lab – Q1 and Q2 2015

- pnCCD detector prototype
 - \rightarrow X-ray test Setup: PHEOBE and later PANTER
- ¼ Mpix LPD
 - \rightarrow Cooling and DAQ infrastructure ready
 - \rightarrow X-ray test setup Big Amber with high-power X-ray tube

AGIPD single module prototype

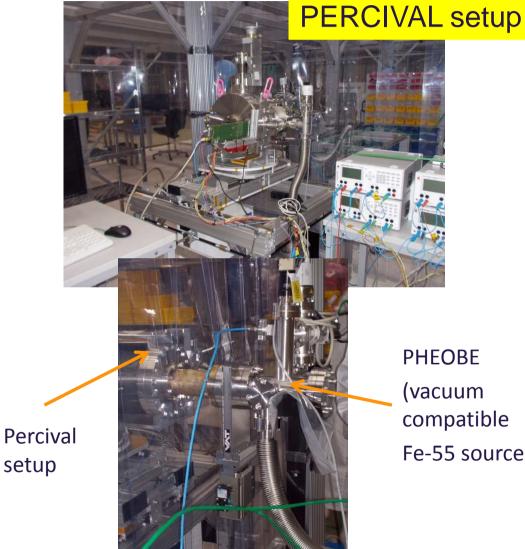
- \rightarrow N₂ atmosphere setup and cooling is needed
- \rightarrow X-ray test setup: Big Amber and later PulXar (with exit window)

Fast CCD detector

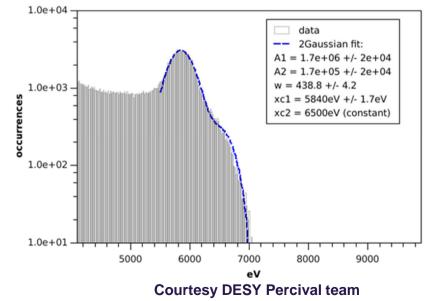
- \rightarrow vacuum system and housing to be built
- \rightarrow X-ray test setup: PHEOBE and PANTER

20

Procedures for Scheduling the WP-75 test facility usage


- The procedures for scheduling the usage of the WP-75 test facility are under development → no show-stoppers were identified
- Involved parties:
- External users: test proposal including requirements for the test infrastructure, schedule and risk assessment
- WP-75: evaluate the requirements, preparation and support before and during the tests as well as technical trainings
- > **Safety Group**: evaluate the risk assessment, safety trainings , access rights
- The safety aspects which have to be taken into account (access of the external groups to our laboratory, required trainings etc.) are currently under discussion with the Safety Group
- The first friendly users (DESY group) used our PHEOBE (vacuum Fe-55 test setup) system for testing their detector prototype. The organization of the work, safety training and access permission to the HERA South laboratory for the guests went all smooth and no show-stopper appeared.

European First Friendly Users at WP-75 Detector Laboratory


Percival prototype at HERA South (October 2014):

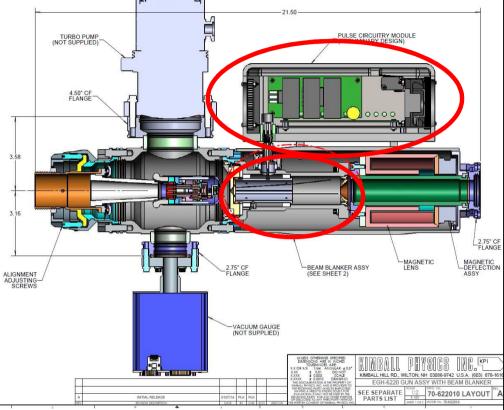
PHEOBE (vacuum compatible Fe-55 source)

Fe 55 spectrum (500ms)

XFEL Summary

- Construction and commissioning of calibration infrastructure is progressing well
- First X-ray setups are operational and can be used for tests
- Procedures of scheduling and access of external groups to WP-75 infrastructure is in preparation and under discussion with Safety Group
- Calibration Infrastructure schedule:
- First laboratory X-ray detector test setups Little Amber and PHEOBE operational (to be used for small prototypes or small detectors)
- > Ambient X-ray Test Setup for ¼ Mpix detectors operational (up to ¼ Mpix) Q1 2015
- Pulsed Multi-Target X-ray Test Setup operational (up to 1 Mpix) Q3 2015
- Preliminary plan for testing the first detectors at the detector Lab exists
- Calibration software and alignment concept \rightarrow see S. Hauf's talk

Thank You



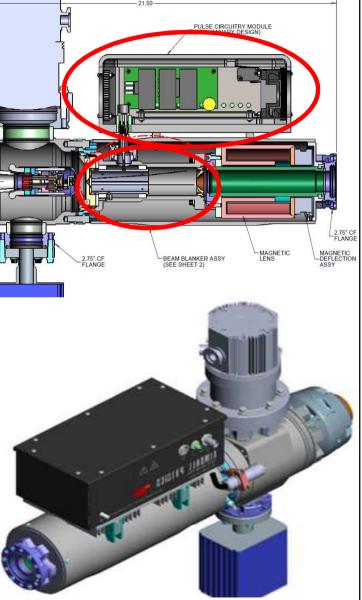
Additional information including introductory & Backup Slides

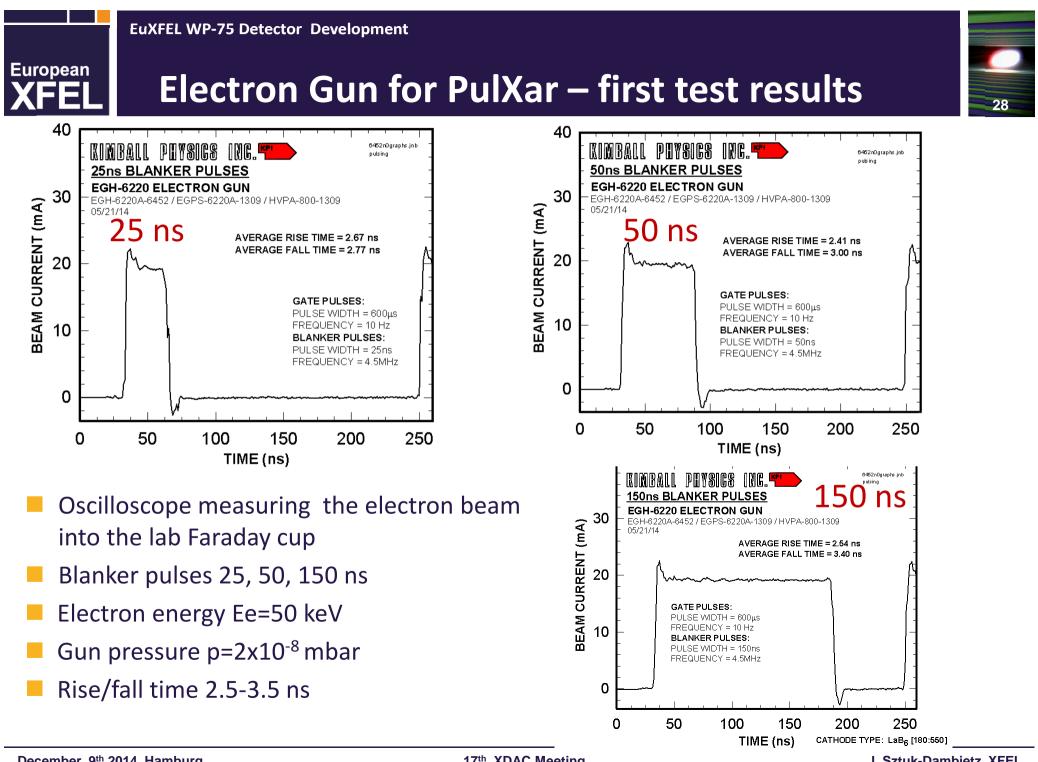
Kimball Physics Electron Gun for PulXar

Parameter	Pulsed mode	DC mode	
Electron energy	1 - 50 keV	1- 60 keV	
Electron beam current	10μΑ - 20 mA	10μA – 6mA	
Beam diameter	0.15 – 10 mm	0.1-10 mm	
Pulsed beam parameters	 Length: τ = 50 -150 ns rise: 2 ns / fall: 3-4 ns XFEL burst mode 	n.a.	

European

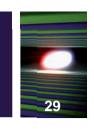
European


Kimball Physics Electron Gun for PulXar

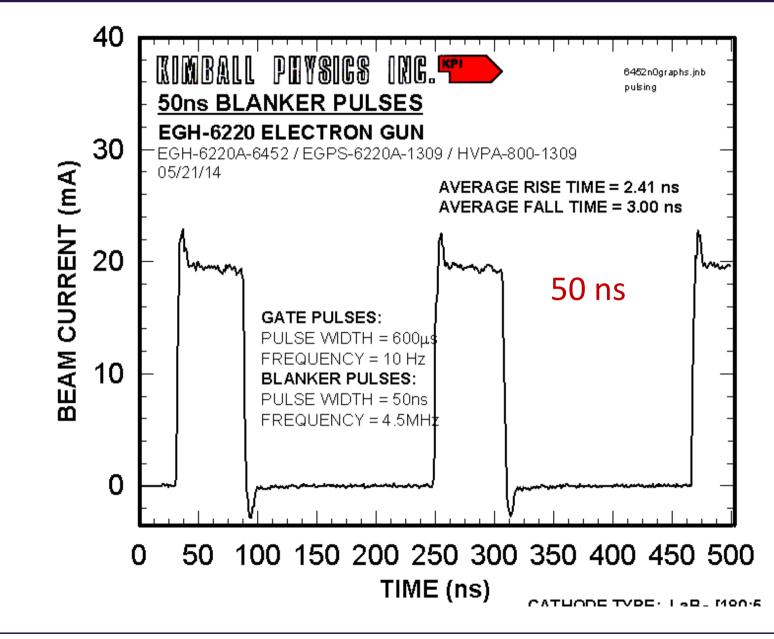


pulses are achievable

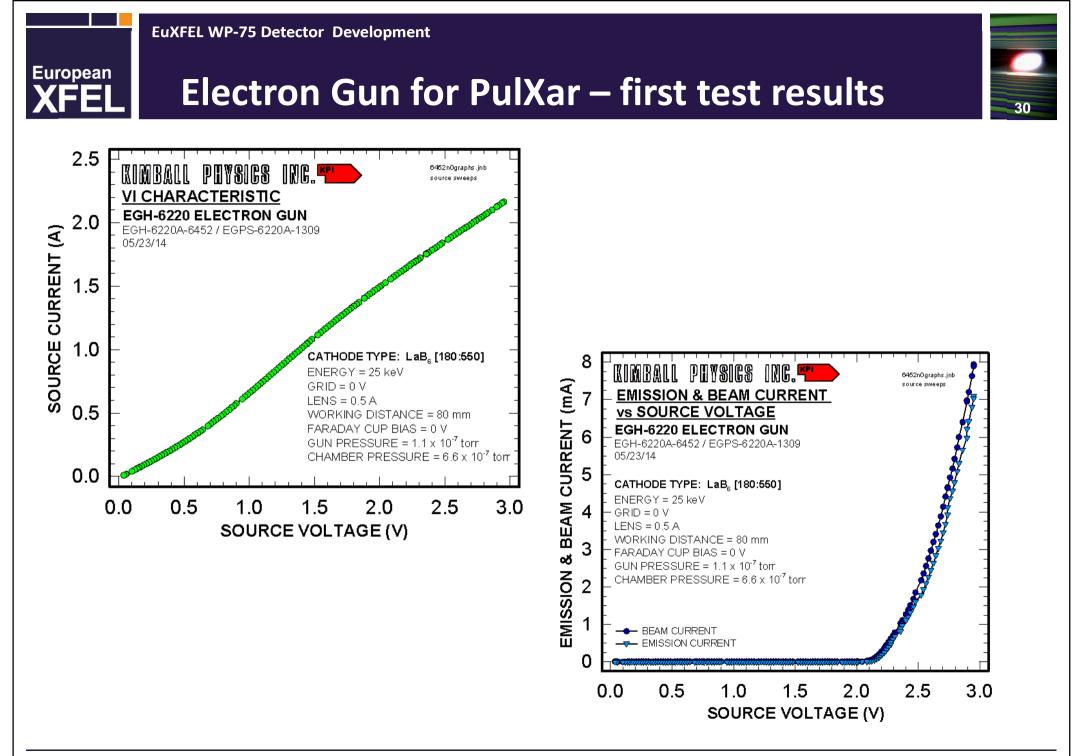
- Custom pulse generator with burst operation designed ar
- Electron gun is in the testing phase ightarrow performance with
- Expected delivery date: June 2014 (on schedule)



December 9th 2014, Hamburg

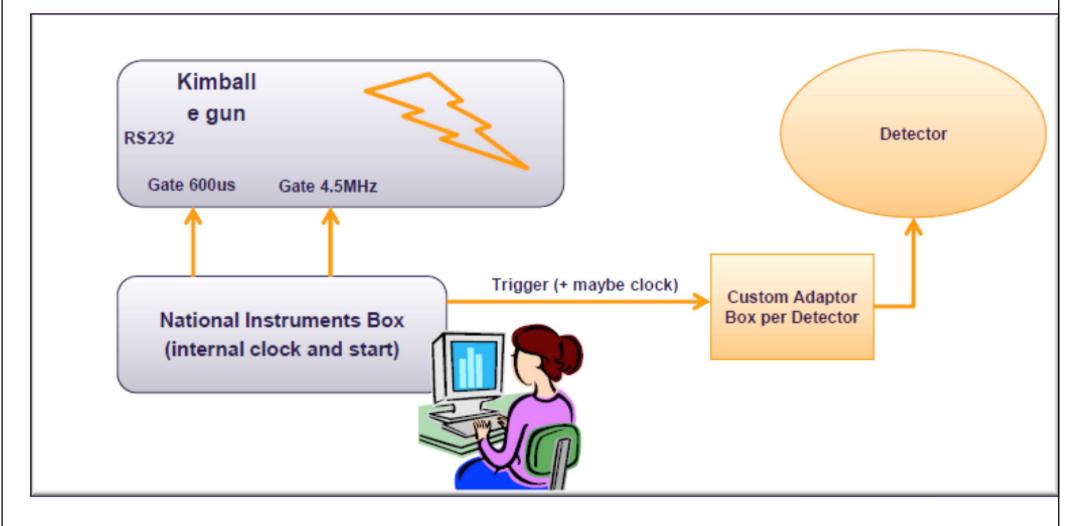

17th XDAC Meeting

J. Sztuk-Dambietz, XFEL



Electron Gun for PulXar – first test results

European



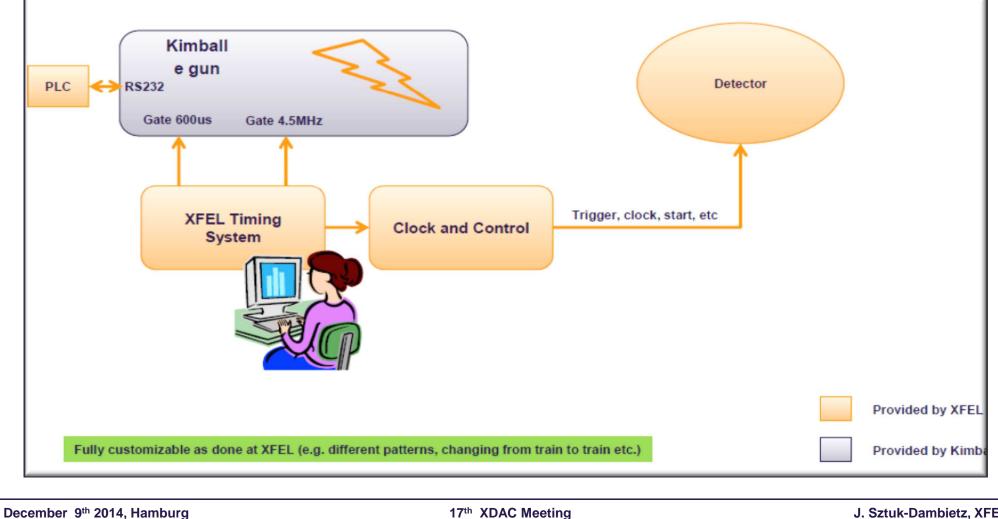
EuXFEL WP-75 Detector Development

Multi-target Pulsed X-ray source

Clock and Control system (P. Gessler)

Day one solution – detector "triggered" by the source

31



Multi-target Pulsed X-ray source

Clock and Control system (P. Gessler)

Final solution – XFEL Timing system

32

EuXFEL WP-75 Detector Development Calibration Strategy - what is needed to calibrate detectors

- Infrastructure to run detector (DAQ, data storage, data base, cooling, cabling etc..)
- Data analysis tools

European

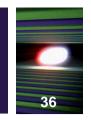
XEE

Different kind of stimulus (X-rays, charged particles, etc..)

Required	Parameter	Comments
Internal charge injection	Gain conversion, Memory Charge Looses (Droop)	Internal source needs to be cross calibrated with the real X- rays
Laboratory X-ray sources (isotopes, X-ray tubes)	Gain conversion, Detector Response Function, Flat-field, Charge Transfer Inefficiency, Quantum Efficiency	Measurements which do not require high intensity and XFEL timing structure at the same time
Beam from FELs/Synchrotrons/ Particle Accelerators	Flat-field, Splitting Events – Crosstalk	All measurements which require high intensity and appropriated XFEL timing

EuXFEL WP-75 Detector Development

XFEL Calibration Strategy – where calibration will be done


XFEL.EU	Detector	FELs/Synchrotrons/ Particle Accelerators		
Project	Laboratory	External Sources	XFEL. EU	
Phase			Instr. Hutches	Dedicated beam
Start-up	Initial detailed calib. and characterization of det. prototypes, modules	Response of detector vs. either rep. rate or intensity		
Commissio -ning	Initial detailed calib. and characterization of full systems	Calibration of 1MPix 2D	 Cross-check lab. calibration Characterization of the detector response under real conditions (rep.rate and intensity) 	
User Operation	Calibration of the full system only if necessary (accident, detailed detector response investigation, etc)	cameras is NOT feasible due to the demanding infrastructure requirements	Scientific. exp: Part of regular exp. procedure (shall take a few mins) Maintainance time - Calibration/tests using in-hutch sources	Detailed detector response investigation under real conditions (rep.rate and intensity)

XFEL Detectors in Experimental Hutch

- Work on definition of calibration procedure during operation phase is ongoing
- Discussion with instrument scientists
- Required accuracy for calibration parameters
- Specific online monitoring in addition to "standard" detector performance monitors
- Calibration data which can/should be taken as part of an experimental campaign/run
- > Detector alignment
- ➤ X-ray calibration sources within the hutches → agreed with the instrument scientists

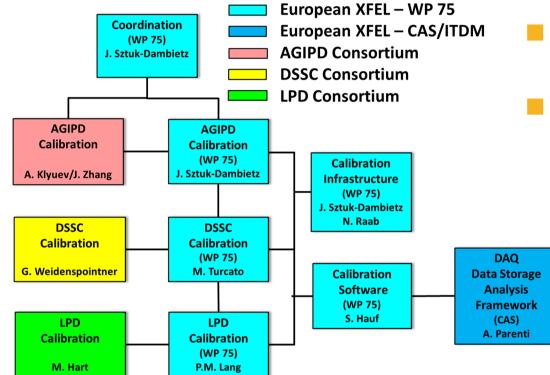
European XFEL

Detector Calibration & Characterization Priorities

Parameter	Priority	Target Accuracy	
			Measurement
Conversion gain G(x,y)	High	< Poisson statistic	
Dark signal O(cell nr,x,y)	High	< detector noise	
Noise N(x,y)	High	< 1%	Simulation
Bad pixel B(cell nr,x,y)	High		
Quantum efficiency QE	High	5-10 % (simulation uncertainty)	Algorithm/
Dynamic range DR(x,y)	High	< Poisson statistic	reconstruction
Memory cell droop (signal losses)	High	< detector noise	
MD(cell nr, x,y)			
Charge transfer inefficiency CTI(x,y)	High	< 1%	
Point spread function PSF(x,y)	Low	to be defined	
Line spread function <i>LSF</i> (x,y)	Low	to be defined	
Spectral response	Medium	< 10%	
Flat field corrections	High	< 10%	
Common mode	High	to be defined	
Event splitting	High	to be defined, for low rate applications	
Alignment (position calibration)	High	< pixel size	

Required (motivated by science) accuracy for calibration parameters \rightarrow input from scientific groups is needed

December 9th 2014, Hamburg


17th XDAC Meeting

EuXFEL WP-75 Detector Development

XFEL Calibration Working Group

Responsible contact persons of the group:

- Work done by detector consortia, WP-75, CAS
- Experts from consortia available beyond start-up phase of the project

- **Meetings:** every 6 months \rightarrow Last meeting November 2014
- Exchange information and discuss progress and open issues, define next steps
- Available documentation

Indico page with presentations and documents: https://indico.desy.de/categoryDisplay.py?categId=278 Calibration Working Group site @ Alfresco -

https://docs.xfel.eu/share/page/site/calibration/dashboard