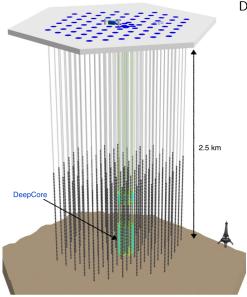
ICECUBE FOLLOWUP AND FUTURE ASTROPHYSICAL NEUTRINO ALERTS

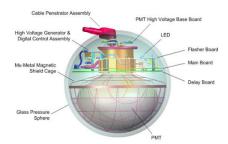
John Felde (University of Maryland)

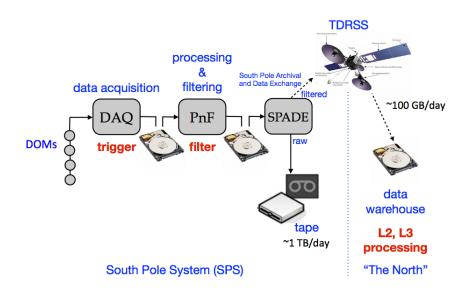
AMON Workshop, DESY

December 11, 2014


OUTLINE

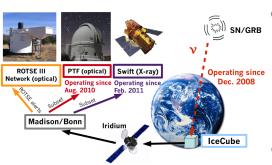
- 1. IceCube
- 2. Existing Followup Programs
- 3. Astrophysical Starting Events
- 4. Online Starting Event Alerts
- 5. Near Realtime Alerts and Analysis


ICECUBE NEUTRINO OBSERVATORY


Detector Info:

- ▶ 1 km³ instrumented volume
- ▶ 86 Strings (completed May 2011)
- 60 Optical Modules per String
- ▶ 5160 total Optical Modules
- Wide Energy Range:
 ~ 10 GeV < F → PeV
- $ightharpoonup \sim 99\%$ uptime, 4π FOV

ICECUBE DAQ



EXISTING FOLLOWUP PROGRAMS

Optical, X-ray, and Gamma follow-up (OFU, XFU, GFU) arXiv: 1309.6979 (p. 40)

Typical latency for alerts is 1-2 minutes

OFU/XFU:

- Neutrino Multiplets
- ▶ < 100s
- ► < 3.5°
- ► Alert ROTSE/PTF
- Alert Swift

GFU:

- Neutrino Flares
- Seconds to Weeks
- ► Alert MAGIC/VERITAS

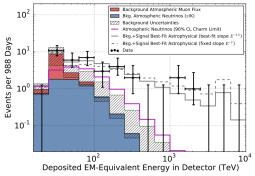
Existing Followup Programs

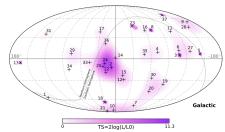
Iridium communication is limited, but not maxed out:

Max 1800 Bytes per message

► Bandwidth: 90 kB/hour

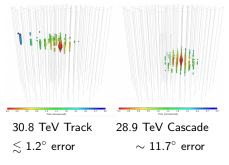
▶ Latency: 1-2 min

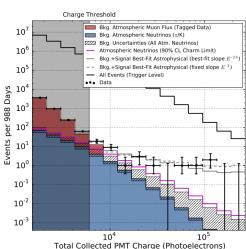

Current usage is \sim 30 kB/hour so there is room for sending more!


ASTROPHYSICAL STARTING EVENTS

988 live-days between 2010 - 2013 37 events (2 coincident with IceTop) Background:

- \sim 8.4 \pm 4.2 cosmic ray μ
- $\sim 6.6^{+5.9}_{-1.6}$ atmospheric ν


- ► arXiv:1405.5303
- No significant source detected
- Clear opportunity for multi-messenger searches
- $ightharpoonup \sim 1$ event per month


ASTROPHYSICAL STARTING EVENTS

Additional Charge Cut:

▶ Total charge > 6000 pe

Simple, stable, fast event selection.

Online Starting Event Alerts

Similar to the other IceCube followup programs. We are working to implement an online starting event selection along with alerts.

Event \rightarrow Online Alert \rightarrow UW Madison \rightarrow AMON

Highlights:

- lacktriangle Pre cut on charge reduces data to $\sim 1 \text{Hz}$
- Starting event selection is fast
- Alerts can be sent over Iridium (1-2 min)
- ▶ Low charge cut: $\sim 5/\text{day}$
- ▶ High charge cut: $\sim 1/\text{month}$

But...

- ▶ 80% of sample is cascades
- ▶ Full event reconstruction is slow

Online Starting Event Alerts

For all events, good timing and energy can be obtained online. For angular pointing, however, we will want to distinguish tracks and cascades.

Tracks:

- Online reconstructions do OK
- ▶ 1-2° online
- $ightharpoonup < 1^{\circ}$ offline

Cascades:

- Poor online reconstruction 10's°
- Offline reconstruction does better

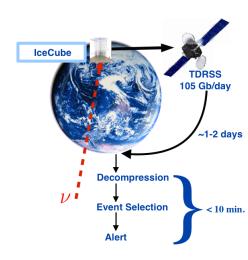
Online Starting Event Alerts

A staged approach.

For the high energy events, the hits alone are 30-40 kB, too large for an Iridium message (1.8 kB).

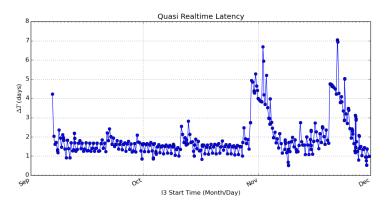
- Could split the data into smaller packets and recombine in the north
- Might be able to expand fast data transmission capabilities from pole

In any case, we would then automatically run the offline reconstructions and provide a second update alert with best angular estimate and errors. These will be delayed one to a few hours, depending on final configuration.


NEAR REALTIME ALERTS AND ANALYSIS

A testbed realtime system has been running in the north for many months now.

- Uses normal data transmission
- Decompress data
- Recalculate online variables.
- Apply event selections
- Send internal alerts (email)
- Save alerts (VOEvent format)


This system is being used develop procedures, but also functions as a near realtime alert system. It is not broadcasting alerts, however.

NEAR REALTIME ALERTS AND ANALYSIS

Compared to the wait time for data transmission, the data processing is fast. Latencies are typically 1-2 days.

* The increased latency periods correspond to file system reconfigurations at UW-Madison and are not indicative of normal running.

Conclusion

This is a very active time for IceCube as we transition from discovery to realtime observations.

Stay tuned, and thanks to AMON for their role in all of this.