IceCube's Optical Follow-Up with the Palomar and Zwicky Transient Factory Third AMON Workshop, DESY Zeuthen

Markus Voge

12th December 2014

PTF/ZTF

The OFU and XFU system

Palomar Transient Factory (PTF)

- Located in California
- Mainly discovering/observing SNe
- FoV: $2.3^{\circ} \times 3.5^{\circ}$
- 1.2 m telescope
- Lim. mag. of up to 21
- Can take spectra for interesting source candidates
- Follow-up since Aug. 2010
- \sim 7 alerts per year

Online analysis scheme

Doublet test statistic

$$\lambda = -2 \ln \mathcal{L} = \frac{\Delta \Psi^2}{\sigma_q^2} + 2 \ln(2\pi\sigma_q^2)$$

$$-2 \ln\left(1 - e^{\frac{-\theta_A^2}{2\sigma_w^2}}\right) + 2 \ln\left(\frac{\Delta T}{100 \text{ s}}\right)$$
(1)

 $\Delta \Psi$: angular separation σ_q^2, σ_w^2 : directional error θ_A : FoV radius ΔT : time difference

Space term: Small for close and well-reco neutrinos Telesopce term: Small for events likely to be in FoV

Time term: Small for events close in time

OFU/XFU: Measured multiplets and alerts

Season	PTF Alerts	Swift alerts
IC79 (10/11)	9	1
IC86-1 (11/12)	8 (5.9)	6 (5.4)
IC86-2 (12/13)	7 (8.3)	8 (7.5)
IC86-3 (13/14)	5 (5.3)	4 (4.7)
IC86-4 (14/15)	2	2
Sum	31	21

Table: Alerts of the Optical and X-ray Follow-Up (in brackets number of expected background alerts).

IceCube's first supernova

- Alert from 2012-03-30:
 - (still) most significant alert so far: $\Delta T = 1.8 \,\mathrm{s}$, $\Delta \Psi = 1.3^{\circ}$
 - SN PTF12csy found in PTF images, very close to neutrinos (0.14°)
 - Late-time IIn, z = 0.068, $\sim 300 \, \mathrm{Mpc}$

Significance of neutrino alert and SN detection

- Significance for IceCube alert from test-statistic distribution
- Integral to the left (signal region) gives false alarm rate (FAR) of $0.216\,{\rm yr}^{-1}$
- \Rightarrow **p** = **12.7%** for IC86-1 season

 Calculate number of coincident (chance) core-collapse SN (CCSN) detections:

$$\overline{N}_{
m det} = \Omega_{
m search} \cdot \int_0^{300\,{
m Mpc}} rac{dN_{
m SN}}{dt\,dV} \cdot T(m_{
m lim}, \hat{M}, r) \cdot r^2\,dr$$
 (2)

- \Rightarrow Poissonian probability of 1.6% to detect any CCSN within $300\,\mathrm{Mpc}$, within the alert error, by chance
 - Combined p-value of IceCube alert and SN detection: $\mathbf{p} = \mathbf{1.4\%} = 2.4 \,\sigma$

PTF12csy: Observations

- First follow-up observations on 3, 5, 7, 9 Apr 2012 (PTF)
- ⇒ SN PTF12csy found, looking several months old
 - More observations by PTF, FTN, Pan-STARRS
 - Archival Pan-STARRS data contains SN
 - Description of instruments and photometric pipelines
 - Spectra taken with Gemini North (17 Apr 2012) and Keck I (9 Feb 2013)
 - Swift UV/X-ray observ. on 20 Apr 2012 and 15 Nov 2012

PTF12csy: Photometry

Figure: Raw light curve in apparent magnitudes

Figure: Simplified, corrected light curve in absolute magnitudes, comparison with other SNe

PTF12csy: Spectral energy distribution (SED)

- Black-body fit to SED (reduced χ^2 of 1.6)
 - Temperature: 71.56 ± 214 K
 - Bolometric lumin.: $(5.53 \pm 0.94) \times 10^{42} \, \mathrm{erg/s}$
 - $\begin{array}{l} \bullet \ \ \mbox{Photometric radius:} \\ (1.7\pm0.1)\times10^{15}\,\mbox{cm} \\ \mbox{(Stefan-Boltzmann law)} \end{array}$

- SN is optically thick: we still see circumstellar material (CSM) shell at t > 177 days after explosion, $R_{\rm ei} < R_{\rm phot}$
- \Rightarrow Upper limit on ejecta velocity: $1125\,\mathrm{km/s}$
 - After adding line luminosities to bol. lum., extrap. using light curve:
- \Rightarrow Total radiated energy: $2.1 \times 10^{50} \, \mathrm{erg}$ within 400 days after first detection (very sim. to SN 2008iy)

PTF12csy: Spectroscopy

Figure: The two spectra from PTF12csy.

PTF12csy: Spectroscopy

Figure: Close-up on the H α line in both spectra.

Complementary offline analysis

- Offline PS analysis at position of SN
- Used Optical-Follow-Up dataset
- Part of SN IIn stacking analysis by Alexander Stasik

Std. PS likelihood analysis with space and energy term:

$$\mathcal{L}(n_s) = \prod_i \frac{n_s}{N} S_i + (1 - \frac{n_s}{N}) B_i$$
 (3)

- Model: Murase et al. 2011 (arXiv:1012.2834), ejecta-CSM interaction
- E^{-2} spectrum with cut-off at $\approx 70\,\mathrm{TeV}$ to $275\,\mathrm{TeV}$

Complementary offline analysis

- Offline PS analysis at position of SN
- Used Optical-Follow-Up dataset
- Part of SN IIn stacking analysis by Alexander Stasik

Std. PS likelihood analysis with space and energy term:

$$\mathcal{L}(n_s) = \prod_i \frac{n_s}{N} S_i + (1 - \frac{n_s}{N}) B_i$$
 (3)

- Model: Murase et al. 2011 (arXiv:1012.2834), ejecta-CSM interaction
- E^{-2} spectrum with cut-off at $\approx 70\,\mathrm{TeV}$ to $275\,\mathrm{TeV}$
- Result:
 - Null-result: fitted n_s of 0
 - Upper limit: $> 1200 \times \text{model fluence of}$ $E^2\Phi \approx 4 \times 10^{-5} \, \text{GeV cm}^{-2}$

PTF12csy: X-ray data

- ullet Swift XRT observations with $4\,\mathrm{ks}$ exposures led to no detection
- $2\,\sigma$ upper limit on count rate is $\approx 0.001\,\mathrm{counts/s}$ ($0.2\,\mathrm{keV}$ to $10\,\mathrm{keV}$)
- Can be converted to unabsorbed luminosity upper limit of about $5\times 10^{41}\,{\rm erg/s}$ to $6\times 10^{41}\,{\rm erg/s}$
- Upper limit too high to exclude X-ray emission, e.g. $(2.4\pm0.8)\times10^{41}\,\mathrm{erg/s}$ measured for other SN IIn

PTF12csy: Host galaxy

Source: SDSS DR10

- Host galaxy is faint dwarf galaxy
- Has absolute magnitude of $M_g \approx -16.2\,\mathrm{mag}$, slightly fainter than Small Magellanic Cloud $(M_V = -16.9\,\mathrm{mag})$
- Faint host galaxies typical for bright IIn SNe (might be selection bias, might be physical)

PTF12csy: Host galaxy

Source: SDSS DR10

- Host galaxy is faint dwarf galaxy
- Has absolute magnitude of $M_g \approx -16.2\,\mathrm{mag}$, slightly fainter than Small Magellanic Cloud $(M_V = -16.9\,\mathrm{mag})$
- Faint host galaxies typical for bright IIn SNe (might be selection bias, might be physical)
- Metallicity of $12 + \log \mathrm{O/H} \approx 8$ (from luminosity), i.e. quite metal-poor
- SN position about $4 \,\mathrm{kpc}$ off-center, galaxy radius of $3.5 \,\mathrm{kpc}$
- ⇒ SN environment probably different from average of host galaxy

Zwicky Transient Factory

Collaboration of Caltech, Oskar Klein Centre (Stockholm), Weizmann Insitute (Rehovot, Israel), DESY, University of Maryland

Zwicky Transient Factory

First light: beginning of 2017

ZTF versus PTF

	PTF	ZTF	
Active Area	$7.26\mathrm{deg^2}$	$47 \mathrm{deg^2}$	
Overhead Time	$46\mathrm{s}$	< 15 s	
Optimal Exposure Time	60 s	$30\mathrm{s}$	ļ
Relative Areal Sur- vey Rate	1×	14.7×	
Relative Volumetric Survey Rate	1×	12.3×	

- $3750 \deg^2/\text{hour}$
- \Rightarrow 3 π survey in 8 hours, > 250 observations/field/year for uniform survey

Existing PTF camera New ZTF camera: MOSAIC 12k 16 6k x 6k e2v CCDs

Summary

- Optical Follow-Up of IceCube neutrino alerts with PTF:
 - Sent 31 alerts to PTF since 2010
 - Found interesting, rare type IIn SN PTF12csy
 - Most likely serendipitous detection (old age, far away, 2.4σ)
 - High-energy neutrinos expected, but IceCube not sensitive
- Optical Follow-Up with ZTF:
 - Bright prospects for multi-wavelength programs
 - FoV so large that almost full sky observed regularly

Backup slides

Online Neutrino Analysis

- IceCube has measured astrophysical neutrino flux
- Best chance to identify sources: multi-messenger, i.e. correlation with other data, e.g. electromagnetic (esp. if sources are transient)
- Problem: Observations are sparse
- Hard to find fast transients
- Idea of (rapid) follow-up: Send alerts to observatories, triggered by IceCube
- ⇒ Need fast neutrino analysis, running "online"

Online Neutrino Analysis

- IceCube has measured astrophysical neutrino flux
- Best chance to identify sources: multi-messenger, i.e. correlation with other data, e.g. electromagnetic (esp. if sources are transient)
- Problem: Observations are sparse
- Hard to find fast transients
- Idea of (rapid) follow-up: Send alerts to observatories, triggered by IceCube
- ⇒ Need fast neutrino analysis, running "online"
- Look for transient sources ($< 100\,\mathrm{s}$) with low neutrino background:
 - GRBs (Waxman & Bahcall 1997, Murase & Nagataki 2006)
 - SNe with jets (Razzaque, Meszaros, Waxman 2005)
 - More exotic phenomena? (Fast Radio Bursts?) (Falcke & Rezzolla 2013)

- $10 \,\mathrm{ks}$ exposure with XRT $(0.2 \,\mathrm{keV}$ to $10 \,\mathrm{keV})$, more intensive follow-up (up to 2 weeks) possible
- Need 'tiling' because of small FoV $(\sim 0.4^\circ)$
- Follow-up since February 2011
- $\bullet \sim 5$ alerts per year

PTF12csy: Expected neutrino production

- Following a model by Murase (arXiv:1012.2834 and in prep.): ejecta-CSM interaction
- Parameters: total CR energy, break-out radius, Vshock
- Expect at most < 0.1 IC events within $\sim 100-1000$ days
- Not a neutrino doublet within $2 \, \mathrm{s}$, $> 158 \, \mathrm{days}$ (rest frame) after SN explosion

 Very unlikely that neutrinos and SN were correlated (unless: blitzar (FRB)?)

Work done by Nora Linn Strotjohann

