Hans-Christian Schultz-Coulon KET Jahrestreffen 2014 Bad Honnef

LHC-Experimente

Highlights 2014, Run 2 Vorbereitungen, Arbeiten für Phase-I & Phase-II ...

Laufende Aktivitäten

ATLAS & CMS – Higgs-Eigenschaften

ATLAS & CMS – Higgs-Eigenschaften

Spin/Parität: $J^P = 0^+$?

Vermessung der Winkelverteilung von Higgs-Zerfällen e.g. H \rightarrow ZZ \rightarrow 4 Leptonen ...

Hypothesenvergleich anhand von MC-generierten Pseudodatenverteilungen ...

ATLAS & CMS – WW-Streuung

Erste Evidenz für WW-Streuprozess

Wichtiger Konsistenztest des SM ...

ATLAS μμjj-Kandidat [Run: 20749; Event: 33152138] [m_{jj} = 2.8 TeV; |Δy_{jj}| = 6.3]

|∆y_{jj}|-Verteilung

LHCb Highlights – B_s -Mischung und Φ_s

Candidates / 0.1 ps 00 00 05 Tagged mixed CKM-Parameter Tagged unmixed Fit mixed mit höchster Präzision ... Fit unmixed B_s-Mischung aus B_s \rightarrow D_s π : LHCt $\mathcal{P}_t \propto \Gamma_s e^{-\Gamma_s t} \left| \cosh\left(\frac{\Delta\Gamma_s}{2}t\right) + \xi \cos(\Delta m_s t) \right|$ ()2 3 \cap 1 with $\Delta m_s \propto |V_{tb}V_{ts}|^2$ Decay Time [ps] $\Delta \Gamma_s \propto |V_{cs} V_{cb}|^2 \cdot \cos \phi_s$ [fixed] ∆Γ_s [ps^{−1}] DØ 8fb⁻¹ .14 Fall 2014 CM\$ 20fb⁻ .12 68% CL regions $\Delta \log L = 1.15$ Messung von $\Delta\Gamma_s$ und Φ_s aus $B_s \rightarrow J/\Psi KK$ und $B_s \rightarrow J/\Psi \pi\pi$: .10 CDF 9.6fb⁻¹ LHCb 3fb⁻¹ [Fit an Zerfallszeit- und Winkelverteilungen] ATLAS 4.9fb⁻¹ .08 Combined $\phi_s = -2 \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{tt}^*}\right) = -2\beta_s$ SM .06

-0.2

0.2

0.4

 $\Phi_{\rm s}^{\rm c\bar{c}cs}$ [rad]

0

-0.4

Aussichten @ 14 TeV – Run 2, 3, ...

Run-2 Vorber

Total Integrated Luminosity [fb⁻¹]

ATLAS

Insertable B-Layer [Extra Pixellage]

Myon-System [Erweiterte Akzeptanz]

L1Calo Upgrade [Extra Flexibilität; L1Topo]

Fast Tracker [HLT-Spurtrigger]

. . .

[neue Photodetektoren]

Myon-System [Erweiterte Akzeptanz]

Trigger-System [L1 Stage-1; HLT Algorithmen]

Beam Pipe $[\emptyset = 45 \text{ cm}; \text{dünner}]$

. . .

LHCb

. . .

Neue Schauerzähler [Vorwärtsrichtung]

RICH-Detektor [Wartung Photodetektoren]

Trigger-System [Offline-Analyse @ 12.5 kHz]

ATLAS – Insertable B-Layer

IBL-Projekt:

Zusätzliche 4. Pixellage ...

Vermessung von Spurpunkten nahe am Wechselwirkungspunkt ... [5.1 cm → 3.3 cm]

Kleinere Pixel ... [50 × 250 µm]

Bessere Sensoren und bessere Auslesechips ...

Status:

30/04:	Montage
07/05:	Installation
27/06:	Verkabelung
10/09:	DAQ-Integration

ATLAS – Insertable B-Layer

IBL-Projekt:

Zusätzliche 4. Pixellage ...

Vermessung von Spurpunkten nahe am Wechselwirkungspunkt ... [5.1 cm → 3.3 cm]

Kleinere Pixel ... [50 × 250 µm]

Bessere Sensoren und bessere Auslesechips ...

Status:

30/04:	Montage
07/05:	Installation
27/06:	Verkabelung
10/09:	DAQ-Integration

CMS – HCAL, DT-System & Pixel Reparatur

Reparatur BPIX e.g. Kurzschlüsse zwischen Bond-Pads

HCAL Outer Neue SiPM Auslese; HPD-Ersatz

Myon-Drifttube-System Verbesserung Trigger- & Datenauslese

SiPM Board

HCAL nach SiPM Upgrade

ATLAS & CMS – Upgrade Trigger-Systeme

- L1Calo zusätzliche Flexibilität (e.g. nMCM)
- L1Topo Selektion topologischer Signaturen
- L1Muon neue TGC-Sektorlogik
- CTP zusätzliche Triggerinputs
- FTK Spuren für den HLT
- HLT Kombination von L2 & EF schnellere Algorithmen

CMS L1Calo – extra Selektivität (MP7,CTP7)

- L1Muon extra Selektivität (MTF7)
 - erweiterte Akzeptanz
- HLT Neues, iteratives Tracking schnellere Algorithmen

 $Z \rightarrow \mu\mu$ Ereignisse; 25 rekonstruierte Vertices

Upgrade Trigger-Systeme

Upgrade Trigger-Systeme

Upgrade Trigger-Systeme

Phase-I Upgrade

- ATLAS: LAr-Kalorimeter [r/o] Fast Tracker New Small Wheel Trigger & DAQ
- CMS: Pixel-Detektor Level-1 Trigger Hadron-Kalorimeter Myon-System [GE1/1]

LHCb: LHCb Tracker Particle ID Trigger & DAQ

ATLAS IDAQ System

Phase-I Upgrade echnical Design Report

LHCb – Scintillating Fibre Tracker

Faserebene

Fasern

CMS – Pixel-Detektor

Verbesserung

Neue Auslese [Digitaler Auslesechip]

Zusätzliche Lagen [BPIX: 3 → 4; FPIX: 2 → 3]

Kleinerer Radius [innerste Lage]

Mechanik etc. [Material, Kühlung, Powering] Grund

Hochratenfähigkeit [Max. Rate: 100 → 250 MHz/cm]

extra 3D-Spurpunkte [d.h. mehr Redundanz]

B-Tagging [bessere IP-Auflösung]

Weniger totes Material [weniger Vielfachstreuung ...]

CMS – Pixel-Detektor

Verbesserung

Neue Auslese

[Digitaler Auslesechip]

Zusätzliche Lagen [BPIX: 3 → 4; FPIX: 2 → 6]

Kleinerer Radius [innerste Lage]

Mechanik etc. [Material, Kühlung, Powering] Grund

Hochratenfähigkeit [Max. Rate: 100 → 250 MHz/cm]

extra 3D-Spurpunkte [d.h. mehr Redundanz]

B-Tagging [bessere IP-Auflösung]

Weniger totes Material [weniger Vielfachstreuung ...]

ATLAS – New Small Wheels

Run 3 [up to $L = 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$]:

Hohe Trefferquoten im Vorwärtsbereich Hohe Triggerraten durch 'Fakes'

Neue 'Small Wheels'
Ratenfeste Myon-Detektoren [Mircromegas]
Extra Triggerkammern [sTGC]

ATLAS – New Small Wheels

Run 3 [up to $L = 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$]:

Hohe Trefferquoten im Vorwärtsbereich Hohe Triggerraten durch 'Fakes'

Neue 'Small Wheels'
Ratenfeste Myon-Detektoren [Mircromegas]
Extra Triggerkammern [sTGC]

Phase-II Upgrade

ATLAS: Pixel-Detektor Silizium-Streifen-Detektor Trigger & DAQ Myon-System (Elektronik) LAr- und Tile (Elektronik)

CMS: Spurdetektor-Upgrade Kalorimeter-Upgrade Myon-Upgrade CMS Spurtrigger Vorwärtsdetektoren

. . .

. . .

Beispiel 1: Phase-II Upgrade – Spurdetektoren

Beispiel 2: Phase-II Upgrade – CMS GEM Myon-Kammern

Comments (16-Feb-2013 08:25:13) *** END OF RUN 1 ***

No beam for a while. Access required time estimate: ~2 years

Ready for Run 2