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Outline

Statistical analysis of Monte Carlo data (Markov chain)

» Basic stafistics
» Correlation, autocorrelation
» Resampling methods

» Confidence intervals
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Lattice QCD data correlations

» Correlations in data generated in in lattice QCD Monte Carlo (MC) simulation:

e Coirrelation in MC time ~~ autocorrelation

e Correlated measurements : different observables coming from same
ensemble

e Coirrelation in Euclidean time-space ~» Green functions

» Neglecting the correlations implies:
e Underestimating the error
e Error propagation when combining measurement?
e Invalidate fitting: goodness-of-fit, error on parameters
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Lattice QCD data equilibrium

» MC simulation contains two phases
e Equilibration or thermalization
e Production: equilibrium expectation values are
obtained from this statistics

» When is the system thermalized?
e measure exponential autocorrelation time 7ey, :
longest autocorrelation time in the system
e Pick Niperm SUCh that 7ey, < Ninerm
e Vvisual inspection of MC time evolution
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Lattice QCD data plaquette

Monte Carlo fime evolution of the plaquette (short range quantity)
from a laftice QCD simulation with dynamical quarks
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Identify the equilibrium phase and perform statistical analysis ...
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basic mean normal CL

Some definitions
Before discussing about autocorrelations, some basic definitions :
» consider a primary observable A e.g. average plaquette
e Assume that the Markov chain has been equilibrated
e Qp,0,...,ay isa(MC)time series of measurements of A

e True expectation value of A: a = (q;)
e (...) denotes the average over an infinite set of uncorrelated simulations
(i.e. independent random numbers and initial states).
» The sample mean (for a particular simulation) is instead

N
>a
i=1

_ 1
a=

2|

e for the set of simulations: (@) = a

» The unbiased sample variance (for a particular simulation) is

1N
2 1 o
O_N—1§(G’ a)

e it expresses how much g is liable to vary from its mean value

» bias: difference between the expectation value of an estimator and its true value
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basic mean normal CL

unssmn distribution

random variable x following a Gaussian distribution
> often the case when x represents an estimator for a parameter with a sufficiently large
data sample (central limit theorem)

1 o bmnp/2a?

f(x, p,0) = s

+00 +°°
=[xt a)ax o —/ (x = )P F(x, 1, )k
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»  probability v that the measured value x will fall within 4§ of the true value p

1 u+s
T
2no Jpu—s

P This is also the probability for the interval x & § to include
» The choice § = o gives an interval called the standard error which has
y=1—a=068.27%
«a ) « 4
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basic mean normal CL

Confidence interval

» Confidence intervals often used for results where interpretation of uncertainties is
non-trivial (i.e. non-Gaussian assumption)
» Definition of a confidence interval with probability v=CL% (confidence level)
e goal: locate aregion which contains the frue value of a parameter 6 with a
probability v
e Xxis a measurement and 6 the unknown parameter for which we want to
construct a confidence interval

e for a given probability v and for every value of 6 one can find a set of values
x1(0, o) and x2(60, o) such that :

X;
P(xi < X < x;0) =~ = /2 f(x; 6)dx
X

X x,(0), 6,(x)
-0,

2,00, 8,0)

parameter 6

16)  %(8)

Possible experimental values x
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Autocorrelations definitions

Recall: oy, ap,...,ay isatime series of measurements of A such that a = (@) = (q;)

The frue autocorrelation function is
F(t) =r(=1) = {(a — a)(ai+ — a))

» Correlates deviation of i"th estimate for A with its deviation after + > 0 updates
» The variance of the measured value & of A'is

o’ =((@-ay)= %il‘(i—j)

ij=1

» The naive variance (i.e. asuming independent measurents) is : ag =T(0)/N
(i Tt = 1/2)
» Atlarge N, the true variance can be written by :

oo
0% = 2‘rimcr§ where Tint = 3 + Z m

Tint IS the infegrated autocorrelation time.
» At large t, the autocorrelation function is

M(f) & exp(—1t/7exp)  for t — oo

where 7, is the exponential autocorrelation time.

DESY Zeuthen (1] G. Herdoiza basic data analysis



Autocorrelation time properties

» The integrated autocorrelation ime 7y

e depends on the details of the algorithm, on the observable, on the
parameters (quark masses, ...) critical slowing down

e itisrelated to the number of update steps needed in order to have
indenpendent measurments (e.g. in units of trajectory lengths)

e encodes the efficiency of the algorithm for a determination of a given
quantity

e necessary fo quote the “error on the error”

» Difficult measurement
e ‘“error on the error” ...
e the calculation can in practice be ambiguous unless the time series is long
e a systematic error is infroduced by replacing the infinite sum by a
finite summation window W

» Choice of the summation window W
e large compared fo the decay time 7exp, ~» small systematic error
e not too large to avoid contribution with negligible signal but large noise
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Autocorrelation time

>

estimator for the true outocorreloﬂon function

r(f Z(OI - G a/+f - G)

variance of the normalized autocorrelation
function : p(t ) = F(f)/T(O)

(60(h? >~— {p(k+f)+p<k—f>—2p<k>p()}

the choice of A is not critical.

estimate of the integrated autocorrelation time iy :

1 w
Tint = E + ; p(f)

different prescriptions exist for the choice of W

eITor ON Tin :
2\ AW 2,

estimates

00 o0z

and generalisation to derived quantities

(i.e. non-linear functions of primary observables) ...
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. .
Binning
» oy, a,...,ay isatime series of measurements of A

» history of length N = BNj is divided into B blocks each of them containing Ng
succesive measurements

Zz z
/_A_V_A_\
> &

jackknife

N . ) . n—)p
\—‘boolslrap

» Purpose of binning:
e Forlarge Ng, binned data becomes Gaussian ~» Gaussian error analysis
e For binned data autocorrelations are reduded. Can be neglected for large
enough Ng

»  Combine with resampling methods : jackknife and bootstrap
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Resampling methods jackknife

» jackknife : remove one data point at a time from the sample and look at the
variation of the resulting average

Full sample Jackknife samples
a
— a, a, a,
ay
d a — a
a :
N a;.y
N 11— N-1
Gy
: ay
an ax ay —
Iy
a a, a, a ay
ie[1N]

P jackknife samples are highly correlated ~ the resulting variance is too small and
must be corrected by multiplying by (N — 1)
» if datais correlated: eliminate blocks of data to form each jackknife sample
~ estimate of mint
» naive binning (instead of jackknife): averages evaluated over only N events
~ stability of fits?
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Resampling methods jackknife

P jackknife bins

%) ! s o
a =N—NB Zof_zo(k—l)NB+j k=1,...,B
i=1 j=1
P the jackknife error is given by
) B
6Fjack - B Z ) - F
-

where F = f(a) is an estimator of the desired quantity F = f(A).

» unbiased estimator :

F—BF+(1—-8)= Zf

» the error of an arbitrary quantity f(&) can be computed
~ determine errors of fit parameters

» correlation between data can be take into account
~  simple with respect to error propagation calculations
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Resampling methods autocorrelations

» Dependence of jackknife error on the bin

size Ng
e Ng=1 ~- naive error
e For Ng > 7exp the autocorrelations
are essentially reduced to those

between nearest neighbor bins

» Estimate of 7, by using :

o = 2Tint G’S

P Dbin size N3 and the size of the summation
window 2W of I-method play a very similar

role
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Resampling methods bootstrap

Booftstrap
P jackknife assumes a Gaussian distrioution of the sample mean
P booftstrap gives the possibility tosample this distrioution
» the chain of measurements is resampled N, times
» each bootstrap sample contains measurements randomly selected (with
replacement) from the full sample

Full sample Bootstrap samples
a, a a, as a,
a, as as as as
N=5 a — | a as 4
a, a, as a as
as a a, a a
a a, a, a, a,

G. Herdoiza basic data analysis



Resampling methods bootstrap

» bootstrap error
e the desired quantity is computed on each sample
e the set of N, estimators sorted numerically
e confidence inferval can be quoted

Order, WEG S SqE =0,

Histogram of the boostrap samples of Plaguette iell.N,]

N,= number of bootstrap samples

g
H
H

0574845 057485 0574885 0574860 05748 0574870 0574075

bOplagSboot data
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correlation  fit

Fitting correlated data

» Consider a Green function x(t) with + = 1...D the Euclidean time

e datasetis x(")(t) where n=1...N label succesive measurements
o we assume x\")(t) are statistically independent versus n (i.e. Ting = 1/2)
e but...strongly correlated in t (data from the same configuration)

» Goal: fit x(t) to a function F(t) which depends on P parameters
Determine :
e the best values of the parameters ap
e the errors of ap
e the confidence level that the fit represents the data sample
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correlation  fit

Fitting correlated data

» Correlated X2 fit : finding best fit parameters corresponds to minimizing
() = D (F(t,a) =X(H) C~ (1 1) (F(, a) = X(1'))
tt!
with respectto apforp=1...P
P X(t) is the sample mean
» C(t,1")is the covariance matrix

N
(n) ¢4/ <[+
C(t, 1) N ] nz:; () =X = X(1)

» Properties of the covariance matrix
e real symmetric positive-definite D x D matrix
e rankisN —1 ~» Cwilhave D — (N — 1) zero eigenvalues if N < D
e C develops small eigenvalues when N > D ~~ impact on X2

For sufficiently large N : expected value of x? is the number of d.o.f. D — P
The correlation is matrix is

vy

C(t,t")

RRRNNC o )

€[0,1]

DESY Zeuthen G. Herdoiza basic data analysis



correlation it

Correlation matrix

@ ; )

2+ 8 2+ g
0 L . L % . L
o 2z 4 & &8 10 o 2z 4 & & 10
x x
T . r ¥ 10 T T T
(e}
8 8 8 - g

Side remark : correlation between systematic errors

~» add errors in quadrature only if they are uncorrelated
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correlation  fit

Correlated fits

» if x(t) are uncorrelated

Y@= (F(t, @) — X(1)?

, (1P

» if F(t, a) is alinear function of a

e minimum of x? from linear algebra

e this value quantifies the consistency between the measured values and
the fitted form

e covariance matrix of the obtained fit parameters ap is given by :

C ' (p,p) = lﬁ
’ 2 00,00,

» If F(t, @) is non-linear :
e minimization through an iteration procedure

e the minimun x?(q) is biased and is not guaranteed to follow a x? distribution
~~ only when N is large
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correlation  fit

Correlated fits

» For small sample size N > D : spurious small eigenvalues of the correlation martrix
which increase x?

» lllustration : [C.Michael, hep-1at/9412087]
o fake N samples from a Gaussian distribution ~» xM(#) withn=1...N
e the sample averageis X(t) and true value x(t) = 0
e compute x? from the fit X(#) = F(#) = 0
e values of XZ/D (averages from 10000 samples)

N D=1 D=3 D=5 D=7 D=10 D=15
10 1.29 1.83 3.03 9.16 oo 00
20 1.12 1.25 1.44 1.74 2.38 6.45
30 1.07 1.16 1.27 1.38 1.59 2.22
40 1.05 1.13 1.17 1.25 1.39 1.70
50 1.04 1.08 1.13 1.21 1.30 1.49
100 1.02 1.03 1.06 1.09 1.12 1.19

» Careful use of correlated X2 with N data samples of D data

unless N > max(D?, 10(D + 1))
e if Nissmall: one can try to model the correlations
e itisreasonable fo use an uncorrelated x? fit and estimate
the errors on the parameters by bootstrap
e it may be difficult to estimate the goodness of fit

euthen - 08.10 G. Herdoiza basic data analysis



__infioduction basic 7 _binning resamplig corelaiot I
Conclusions

» Autocorrelations in Markov chains

e Autocorrelation function
e Binning
e Resampling : jackknife, bootstrap

» Correlations among observables
» References

e B. Berg "Markov Chain Monte Carlo Simulations and their Statistical Analysis"

e Numerical Recipes

e M. C. K. Yang and David H. Robinson, Understanding and Learning Statistics
by Computer, (World Scientific, Singapore, 1986)

o Ulli Wolff, “"Monte Carlo errors with less errors”, hep-lat/0306017

» Tutorial

e goto http://www-zeuthen.desy.de/ herdoiza/tutorial
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