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Outline

Statistical analysis of Monte Carlo data (Markov chain)

I Basic statistics

I Correlation, autocorrelation

I Resampling methods

I Confidence intervals
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Lattice QCD data correlations

I Correlations in data generated in in lattice QCD Monte Carlo (MC) simulation:

• Correlation in MC time autocorrelation

• Correlated measurements : different observables coming from same

ensemble

• Correlation in Euclidean time-space Green functions

I Neglecting the correlations implies:

• Underestimating the error

• Error propagation when combining measurement?

• Invalidate fitting: goodness-of-fit, error on parameters
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Lattice QCD data equilibrium

I MC simulation contains two phases
• Equilibration or thermalization
• Production: equilibrium expectation values are

obtained from this statistics

I When is the system thermalized?
• measure exponential autocorrelation time τexp :

longest autocorrelation time in the system
• pick Ntherm such that τexp � Ntherm

• visual inspection of MC time evolution
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Lattice QCD data plaquette

Monte Carlo time evolution of the plaquette (short range quantity)

from a lattice QCD simulation with dynamical quarks
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Identify the equilibrium phase and perform statistical analysis ...
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Some definitions
Before discussing about autocorrelations, some basic definitions :

I consider a primary observable A e.g. average plaquette

• Assume that the Markov chain has been equilibrated

• a1,a2, . . . ,aN is a (MC) time series of measurements of A

• True expectation value of A : a = 〈ai〉

• 〈. . .〉 denotes the average over an infinite set of uncorrelated simulations

(i.e. independent random numbers and initial states).

I The sample mean (for a particular simulation) is instead

ā =
1
N

NX
i=1

ai

• for the set of simulations: 〈ā〉 = a

I The unbiased sample variance (for a particular simulation) is

σ
2 =

1
N − 1

NX
i=1

(ai − ā)2

• it expresses how much ai is liable to vary from its mean value

I bias: difference between the expectation value of an estimator and its true value
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Gaussian distribution
I random variable x following a Gaussian distribution
I often the case when x represents an estimator for a parameter with a sufficiently large

data sample (central limit theorem)

f (x, µ, σ) =
1

√
2πσ

e−(x−µ)2/2σ2

µ =

Z +∞

−∞
x f (x, µ, σ)dx σ

2 =

Z +∞

−∞
(x − µ)2 f (x, µ, σ)dx

I probability γ that the measured value x will fall within±δ of the true value µ

γ = 1− α =
1

√
2πσ

Z µ+δ

µ−δ
e−(x−µ)2/2σ2

dx

I This is also the probability for the interval x ± δ to include µ
I The choice δ = σ gives an interval called the standard error which has

γ = 1− α = 68.27%

α δ α δ
0.3173 1σ 0.2 1.28σ
0.0455 2σ 0.1 1.64σ
0.0027 3σ 0.05 1.96σ
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Confidence interval
I Confidence intervals often used for results where interpretation of uncertainties is

non-trivial (i.e. non-Gaussian assumption)

I Definition of a confidence interval with probability γ=CL% (confidence level)

• goal : locate a region which contains the true value of a parameter θ with a

probability γ

• x is a measurement and θ the unknown parameter for which we want to

construct a confidence interval

• for a given probability γ and for every value of θ one can find a set of values

x1(θ, α) and x2(θ, α) such that :

Possible experimental values x
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θ
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P(x1 < x < x2; θ) = γ =

Z x2

x1

f (x; θ)dx
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Autocorrelations definitions
Recall : a1,a2, . . . ,aN is a time series of measurements of A such that a = 〈ā〉 = 〈ai〉

The true autocorrelation function is

Γ(t) = Γ(−t) = 〈(ai − a)(ai+t − a)〉

I Correlates deviation of i’th estimate for A with its deviation after t ≥ 0 updates

I The variance of the measured value ā of A is

σ
2 ≡

D
(ā − a)2

E
=

1
N2

NX
i,j=1

Γ(i − j)

I The naive variance (i.e. asuming independent measurents) is : σ2
0 = Γ(0)/N

(i.e. τint = 1/2)

I At large N, the true variance can be written by :

σ
2 = 2τintσ

2
0 where τint =

1
2

+
∞X
t=1

Γ(t)

Γ(0)

τint is the integrated autocorrelation time.

I At large t , the autocorrelation function is

Γ(t) ∝ exp(−t/τexp) for t →∞

where τexp is the exponential autocorrelation time.
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Autocorrelation time properties
I The integrated autocorrelation time τint

• depends on the details of the algorithm, on the observable, on the

parameters (quark masses, ...) critical slowing down

• it is related to the number of update steps needed in order to have

indenpendent measurments (e.g. in units of trajectory lengths)

• encodes the efficiency of the algorithm for a determination of a given

quantity

• necessary to quote the “error on the error”

I Difficult measurement

• “error on the error” ...

• the calculation can in practice be ambiguous unless the time series is long

• a systematic error is introduced by replacing the infinite sum by a

finite summation window W

I Choice of the summation window W

• large compared to the decay time τexp  small systematic error

• not too large to avoid contribution with negligible signal but large noise
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Autocorrelation time estimates

I estimator for the true autocorrelation function

Γ(t) =
1

N − t

N−tX
i=1

(ai − ā)(ai+t − ā)

I variance of the normalized autocorrelation

function : ρ̄(t) = Γ(t)/Γ(0)D
δρ(t)2

E
'

1
N

t+ΛX
k=1

˘
ρ̄(k + t) + ρ̄(k − t)− 2ρ̄(k)ρ̄(t)

¯2

the choice of Λ is not critical.

I estimate of the integrated autocorrelation time τint :

τint =
1
2

+
WX

t=1

ρ̄(t)

different prescriptions exist for the choice of W

I error on τint : D
δτ

2
int

E
'

4W + 2
N

τ
2
int

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

t

G
am

m
a(

t)

0 20 40 60 80 100

0
5

10
15

20

x

W

ta
ui

nt
(W

)

and generalisation to derived quantities

(i.e. non-linear functions of primary observables) ...
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Binning
I a1,a2, . . . ,aN is a time series of measurements of A

I history of length N = BNB is divided into B blocks each of them containing NB

succesive measurements
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I Purpose of binning:

• For large NB , binned data becomes Gaussian  Gaussian error analysis

• For binned data autocorrelations are reduded. Can be neglected for large

enough NB

I Combine with resampling methods : jackknife and bootstrap
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Resampling methods jackknife
I jackknife : remove one data point at a time from the sample and look at the

variation of the resulting average

N
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Jackknife samples

I jackknife samples are highly correlated  the resulting variance is too small and

must be corrected by multiplying by (N − 1)

I if data is correlated: eliminate blocks of data to form each jackknife sample

 estimate of τint

I naive binning (instead of jackknife): averages evaluated over only NB events

 stability of fits?
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Resampling methods jackknife
I jackknife bins

a(k) =
1

N − NB

0@ NX
i=1

ai −
NBX
j=1

a
(k−1)NB+j

1A k = 1, . . . , B

I the jackknife error is given by

σ̄
2
F jack =

B − 1
B

BX
k=1

(f (a(k))− F̄)2

where F̄ = f (ā) is an estimator of the desired quantity F = f (A).

I unbiased estimator :

F̄ → B F̄ + (1− B)
1
B

BX
k=1

f (a(k))

I the error of an arbitrary quantity f (ā) can be computed

 determine errors of fit parameters

I correlation between data can be take into account

 simple with respect to error propagation calculations
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Resampling methods autocorrelations

I Dependence of jackknife error on the bin

size NB

• NB = 1  naive error

• For NB > τexp the autocorrelations

are essentially reduced to those

between nearest neighbor bins

I Estimate of τint by using :

σ
2 = 2τintσ

2
0

I bin size NB and the size of the summation

window 2W of Γ-method play a very similar

rôle
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Resampling methods bootstrap

Bootstrap

I jackknife assumes a Gaussian distribution of the sample mean

I bootstrap gives the possibility tosample this distribution

I the chain of measurements is resampled Nb times

I each bootstrap sample contains measurements randomly selected (with

replacement) from the full sample

N=5
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Resampling methods bootstrap

I bootstrap error

• the desired quantity is computed on each sample

• the set of Nb estimators sorted numerically

• confidence interval can be quoted

Histogram of the boostrap samples of Plaquette

b0plaq$boot.data
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Order ai

i � [1, Nb]

Nb= number of bootstrap samples

a1 ≤ a2 ≤ . . .≤ ai ≤. . .≤ aNb
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Fitting correlated data

I Consider a Green function x(t) with t = 1 . . .D the Euclidean time

• data set is x (n)(t) where n = 1 . . .N label succesive measurements

• we assume x (n)(t) are statistically independent versus n (i.e. τint = 1/2)

• but . . . strongly correlated in t (data from the same configuration)

I Goal : fit x(t) to a function F(t) which depends on P parameters ap

Determine :

• the best values of the parameters ap

• the errors of aP

• the confidence level that the fit represents the data sample
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Fitting correlated data
I Correlated χ2 fit : finding best fit parameters corresponds to minimizing

χ
2(a) =

X
t,t′

(F(t,a)− x(t)) C−1(t, t′) (F(t′,a)− x(t′))

with respect to ap for p = 1 . . . P

I x(t) is the sample mean

I C(t, t′) is the covariance matrix

C(t, t′) =
1

N − 1

NX
n=1

(x (n)(t)− x(t))(x (n)(t′)− x(t′))

I Properties of the covariance matrix
• real symmetric positive-definite D × D matrix
• rank is N − 1  C will have D − (N − 1) zero eigenvalues if N ≤ D
• C develops small eigenvalues when N & D  impact on χ2

I For sufficiently large N : expected value of χ2 is the number of d.o.f. D − P
I The correlation is matrix is

ρ(t, t′) =
C(t, t′)p

C(t, t)C(t′, t′)
∈ [0, 1]
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Correlation matrix

 

Side remark : correlation between systematic errors

 add errors in quadrature only if they are uncorrelated
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Correlated fits

I if x(t) are uncorrelated

χ
2(a) =

X
t

(F(t,a)− x(t))2

σ(t)2

I if F(t,a) is a linear function of a

• minimum of χ2 from linear algebra
• this value quantifies the consistency between the measured values and

the fitted form
• covariance matrix of the obtained fit parameters aP is given by :

eC−1(p, p′) =
1

2

∂2χ2

∂ap∂ap′

I If F(t,a) is non-linear :
• minimization through an iteration procedure
• the minimun χ2(a) is biased and is not guaranteed to follow a χ2 distribution
 only when N is large
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Correlated fits
I For small sample size N & D : spurious small eigenvalues of the correlation matrix

which increase χ2

I Illustration : [C.Michael, hep-lat/9412087]

• take N samples from a Gaussian distribution  x(n)(t) with n = 1 . . .N
• the sample average is x(t) and true value x(t) = 0
• compute χ2 from the fit x(t) = F(t) = 0
• values of χ2/D (averages from 10000 samples)

N D = 1 D = 3 D = 5 D = 7 D = 10 D = 15
10 1.29 1.83 3.03 9.16 ∞ ∞
20 1.12 1.25 1.44 1.74 2.38 6.45
30 1.07 1.15 1.27 1.38 1.59 2.22
40 1.05 1.13 1.17 1.25 1.39 1.70
50 1.04 1.08 1.13 1.21 1.30 1.49

100 1.02 1.03 1.06 1.09 1.12 1.19

I Careful use of correlated χ2 with N data samples of D data

unless N > max(D2, 10(D + 1))

• if N is small : one can try to model the correlations
• it is reasonable to use an uncorrelated χ2 fit and estimate

the errors on the parameters by bootstrap
• it may be difficult to estimate the goodness of fit
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Conclusions

I Autocorrelations in Markov chains

• Autocorrelation function

• Binning

• Resampling : jackknife, bootstrap

I Correlations among observables

I References

• B. Berg "Markov Chain Monte Carlo Simulations and their Statistical Analysis"

• Numerical Recipes

• M. C. K. Yang and David H. Robinson, Understanding and Learning Statistics

by Computer, (World Scientific, Singapore, 1986)

• Ulli Wolff, ”Monte Carlo errors with less errors”, hep-lat/0306017

I Tutorial

• go to http://www-zeuthen.desy.de/˜herdoiza/tutorial
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