# Basic Statistical Analysis of Lattice QCD Data

Gregorio Herdoiza

**DESY Zeuthen** 

Lattice Practices 2008

DESY Zeuthen - 08.10.08 G. Herdoiza basic data analysis

#### Outline

Statistical analysis of Monte Carlo data (Markov chain)

- Basic statistics
- Correlation, autocorrelation
- Resampling methods
- Confidence intervals

#### Lattice QCD data

#### correlations

Correlations in data generated in in lattice QCD Monte Carlo (MC) simulation:

- Correlation in MC time ~> autocorrelation
- Correlated measurements : different observables coming from same ensemble
- Correlation in Euclidean time-space ~>> Green functions
- Neglecting the correlations implies:
  - Underestimating the error
  - Error propagation when combining measurement?
  - Invalidate fitting: goodness-of-fit, error on parameters

## Lattice QCD data

## equilibrium

- MC simulation contains two phases
  - Equilibration or thermalization
  - Production: equilibrium expectation values are obtained from this statistics
- When is the system thermalized?
  - measure exponential autocorrelation time  $\tau_{\rm exp}$  : longest autocorrelation time in the system
  - pick  $N_{
    m therm}$  such that  $au_{
    m exp} \ll N_{
    m therm}$
  - visual inspection of MC time evolution

## Lattice QCD data

## plaquette

Monte Carlo time evolution of the plaquette (short range quantity) from a lattice QCD simulation with dynamical quarks



basic data analysis

Identify the equilibrium phase and perform statistical analysis ...

#### Some definitions

Before discussing about autocorrelations, some basic definitions :

- consider a primary observable A e.g. average plaquette
  - Assume that the Markov chain has been equilibrated
  - $a_1, a_2, \ldots, a_N$  is a (MC) time series of measurements of A
  - True expectation value of  $A : a = \langle a_i \rangle$
  - (...) denotes the average over an infinite set of uncorrelated simulations (*i.e.* independent random numbers and initial states).
- The sample mean (for a particular simulation) is instead

$$\bar{a} = \frac{1}{N} \sum_{i=1}^{N} a_i$$

- for the set of simulations:  $\langle \bar{a} \rangle = a$
- The unbiased sample variance (for a particular simulation) is

$$\sigma^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (a_{i} - \bar{a})^{2}$$

- it expresses how much *a<sub>i</sub>* is liable to vary from its mean value
- bias: difference between the expectation value of an estimator and its true value

#### **Gaussian distribution**

- random variable x following a Gaussian distribution
- often the case when x represents an estimator for a parameter with a sufficiently large data sample (central limit theorem)

$$f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$$
  
$$\mu = \int_{-\infty}^{+\infty} x f(x,\mu,\sigma) dx \qquad \qquad \sigma^2 = \int_{-\infty}^{+\infty} (x-\mu)^2 f(x,\mu,\sigma) dx$$

• probability  $\gamma$  that the measured value x will fall within  $\pm \delta$  of the true value  $\mu$ 

$$\gamma = 1 - \alpha = \frac{1}{\sqrt{2\pi\sigma}} \int_{\mu-\delta}^{\mu+\delta} e^{-(x-\mu)^2/2\sigma^2} dx$$

This is also the probability for the interval x ± δ to include μ
 The choice δ = σ gives an interval called the standard error which has γ = 1 - α = 68.27%



| α      | δ         | α    | δ            |
|--------|-----------|------|--------------|
| 0.3173 | $1\sigma$ | 0.2  | $1.28\sigma$ |
| 0.0455 | $2\sigma$ | 0.1  | $1.64\sigma$ |
| 0.0027 | $3\sigma$ | 0.05 | $1.96\sigma$ |

#### **Confidence** interval

- Confidence intervals often used for results where interpretation of uncertainties is non-trivial (i.e. non-Gaussian assumption)
- Definition of a confidence interval with probability  $\gamma$ =CL% (confidence level)
  - goal : locate a region which contains the true value of a parameter  $\theta$  with a probability  $\gamma$
  - x is a measurement and  $\theta$  the unknown parameter for which we want to construct a confidence interval
  - for a given probability  $\gamma$  and for every value of  $\theta$  one can find a set of values  $x_1(\theta, \alpha)$  and  $x_2(\theta, \alpha)$  such that :



$$P(x_1 < x < x_2; \theta) = \gamma = \int_{x_1}^{x_2} f(x; \theta) dx$$

#### Autocorrelations

## definitions

Recall:  $a_1, a_2, \ldots, a_N$  is a time series of measurements of A such that  $a = \langle \tilde{a} \rangle = \langle a_i \rangle$ The *true* autocorrelation function is

 $\Gamma(t) = \Gamma(-t) = \langle (a_i - a)(a_{i+t} - a) \rangle$ 

- Correlates deviation of i'th estimate for A with its deviation after  $t \ge 0$  updates
- The variance of the measured value  $\bar{a}$  of A is

$$\sigma^{2} \equiv \left\langle \left(\bar{a} - a\right)^{2} \right\rangle = \frac{1}{N^{2}} \sum_{i,j=1}^{N} \Gamma(i - j)$$

The naive variance (*i.e.* asuming independent measurents) is :  $\sigma_0^2 = \Gamma(0)/N$ 

(*i.e.*  $\tau_{int} = 1/2$ )

At large N, the true variance can be written by :

 $\sigma^2 = 2\tau_{\text{int}}\sigma_0^2$  where  $\tau_{\text{int}} = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{\Gamma(t)}{\Gamma(0)}$ 

 $\tau_{\rm int}$  is the *integrated* autocorrelation time.

At large t, the autocorrelation function is

$$\Gamma(t) \propto \exp(-t/\tau_{\exp})$$
 for  $t \to \infty$ 

where  $\tau_{exp}$  is the *exponential* autocorrelation time.

## Autocorrelation time

## properties

- The integrated autocorrelation time  $au_{int}$ 
  - depends on the details of the algorithm, on the observable, on the parameters (quark masses, ...)
     critical slowing down
  - it is related to the number of update steps needed in order to have independent measurments (e.g. in units of trajectory lengths)
  - encodes the efficiency of the algorithm for a determination of a given quantity
  - necessary to quote the "error on the error"
- Difficult measurement
  - "error on the error" ...
  - the calculation can in practice be ambiguous unless the time series is long
  - a systematic error is introduced by replacing the infinite sum by a finite summation window W
- Choice of the summation window W
  - large compared to the decay time  $au_{
    m exp} \rightsquigarrow$  small systematic error
  - not too large to avoid contribution with negligible signal but large noise

## Autocorrelation time

## estimates

estimator for the true autocorrelation function

$$\overline{\Gamma}(t) = \frac{1}{N-t} \sum_{i=1}^{N-t} (a_i - \overline{a})(a_{i+t} - \overline{a})$$

▶ variance of the normalized autocorrelation function :  $\bar{\rho}(t) = \overline{\Gamma}(t)/\overline{\Gamma}(0)$  $\left\langle \delta\rho(t)^2 \right\rangle \simeq \frac{1}{N} \sum_{k=1}^{t+\Lambda} \left\{ \bar{\rho}(k+t) + \bar{\rho}(k-t) - 2\bar{\rho}(k)\bar{\rho}(t) \right\}^2$ 

the choice of  $\Lambda$  is not critical.

• estimate of the integrated autocorrelation time  $au_{\mathrm{int}}$  :

$$\tau_{\rm int} = \frac{1}{2} + \sum_{t=1}^W \bar{\rho}(t)$$

 $\sqrt{s^2} + 4W + 2_2$ 



different prescriptions exist for the choice of W

• error on  $\tau_{\text{int}}$  :

DESY Zeuthen - 08.10.08

and generalisation to derived quantities

(i.e. non-linear functions of primary observables) ...

G. Herdoiza basic

basic data analysis

## **Binning**

- $a_1, a_2, \ldots, a_N$  is a time series of measurements of A
- history of length  $N = BN_B$  is divided into *B* blocks each of them containing  $N_B$  succesive measurements.



- Purpose of binning:
  - For large  $N_B$ , binned data becomes Gaussian  $\rightarrow$  Gaussian error analysis
  - For binned data autocorrelations are reduded. Can be neglected for large enough  $N_B$
- Combine with resampling methods : jackknife and bootstrap

## jackknife

 jackknife : remove one data point at a time from the sample and look at the variation of the resulting average



- ▶ jackknife samples are highly correlated → the resulting variance is too small and must be corrected by multiplying by (N - 1)
- If data is correlated: eliminate blocks of data to form each jackknife sample → estimate of τ<sub>int</sub>
- naive binning (instead of jackknife): averages evaluated over only N<sub>B</sub> events ~> stability of fits?

## jackknife

jackknife bins

$$\alpha^{(k)} = \frac{1}{N - N_B} \left( \sum_{i=1}^N \alpha_i - \sum_{j=1}^{N_B} \alpha_{(k-1)N_B + j} \right) \qquad k = 1, \dots, B$$

the jackknife error is given by

$$\bar{\sigma}_{F\text{jack}}^2 = \frac{B-1}{B} \sum_{k=1}^{B} (f(\alpha^{(k)}) - \bar{F})^2$$

where  $\overline{F} = f(\overline{a})$  is an estimator of the desired quantity F = f(A).

unbiased estimator :

$$\overline{F} \rightarrow B\overline{F} + (1-B) \frac{1}{B} \sum_{k=1}^{B} f(\alpha^{(k)})$$

- the error of an arbitrary quantity f(ā) can be computed
  - → determine errors of fit parameters
- correlation between data can be take into account
  - $\rightsquigarrow$  simple with respect to error propagation calculations

#### Dependence of jackknife error on the bin size N<sub>B</sub>

- $N_B = 1 \rightsquigarrow$  naive error
- For  $N_B > \tau_{exp}$  the autocorrelations are essentially reduced to those between nearest neighbor bins
- Estimate of  $\tau_{\rm int}$  by using :

 $\sigma^2 = 2\tau_{\rm int}\sigma_0^2$ 

 bin size N<sub>B</sub> and the size of the summation window 2W of Γ-method play a very similar rôle



autocorrelations

## bootstrap

#### Bootstrap

- jackknife assumes a Gaussian distribution of the sample mean
- bootstrap gives the possibility tosample this distribution
- the chain of measurements is resampled  $N_b$  times
- each bootstrap sample contains measurements randomly selected (with replacement) from the full sample



#### bootstrap error

- the desired quantity is computed on each sample
- the set of N<sub>b</sub> estimators sorted numerically
- confidence interval can be quoted





## bootstrap

## Fitting correlated data

Consider a Green function x(t) with  $t = 1 \dots D$  the Euclidean time

- data set is  $x^{(n)}(t)$  where  $n = 1 \dots N$  label succesive measurements
- we assume  $x^{(n)}(t)$  are statistically independent versus n (i.e.  $\tau_{int} = 1/2$ )
- but ... strongly correlated in t (data from the same configuration)

Goal: fit x(t) to a function F(t) which depends on P parameters ap Determine:

- the best values of the parameters a<sub>p</sub>
- the errors of a<sub>P</sub>
- the confidence level that the fit represents the data sample

## Fitting correlated data

Correlated  $\chi^2$  fit : finding best fit parameters corresponds to minimizing

$$\chi^{2}(a) = \sum_{t,t'} (F(t,a) - \overline{x}(t)) C^{-1}(t,t') (F(t',a) - \overline{x}(t'))$$

with respect to  $a_p$  for  $p = 1 \dots P$ 

- $\blacktriangleright \overline{x}(t)$  is the sample mean
- C(t, t') is the covariance matrix

$$C(t,t') = \frac{1}{N-1} \sum_{n=1}^{N} (x^{(n)}(t) - \overline{x}(t))(x^{(n)}(t') - \overline{x}(t'))$$

- Properties of the covariance matrix
  - real symmetric positive-definite  $D \times D$  matrix
  - rank is  $N-1 \iff C$  will have D-(N-1) zero eigenvalues if  $N \le D$
  - C develops small eigenvalues when  $N \gtrsim D \iff$  impact on  $\chi^2$
- For sufficiently large N : expected value of χ<sup>2</sup> is the number of d.o.f. D − P
   The correlation is matrix is

$$\rho(t, t') = \frac{C(t, t')}{\sqrt{C(t, t)C(t', t')}} \in [0, 1]$$

## **Correlation matrix**



Side remark : correlation between systematic errors

 $\rightsquigarrow\,$  add errors in quadrature only if they are uncorrelated

## **Correlated fits**

if x(t) are uncorrelated

$$\chi^{2}(a) = \sum_{t} \frac{(F(t, a) - \overline{x}(t))^{2}}{\sigma(t)^{2}}$$

• if F(t, a) is a linear function of a

- minimum of  $\chi^2$  from linear algebra
- this value quantifies the consistency between the measured values and the fitted form
- covariance matrix of the obtained fit parameters *a*<sub>P</sub> is given by :

$$\widetilde{C}^{-1}(\mathcal{p},\mathcal{p}') = rac{1}{2} rac{\partial^2 \chi^2}{\partial a_{\mathcal{p}} \partial a_{\mathcal{p}'}}$$

If F(t, a) is non-linear :

- minimization through an iteration procedure
- the minimum  $\chi^2(a)$  is biased and is not guaranteed to follow a  $\chi^2$  distribution  $\rightsquigarrow$  only when N is large

#### **Correlated fits**

- For small sample size  $N \gtrsim D$ : spurious small eigenvalues of the correlation matrix which increase  $\chi^2$
- Illustration :

[C.Michael, hep-lat/9412087]

- take N samples from a Gaussian distribution  $\rightsquigarrow x^{(n)}(t)$  with  $n = 1 \dots N$
- the sample average is  $\overline{x}(t)$  and true value x(t) = 0
- compute  $\chi^2$  from the fit  $\overline{x}(t) = F(t) = 0$
- values of  $\chi^2/D$  (averages from 10000 samples)

| N   | D = 1 | D = 3 | D = 5 | D = 7 | D = 10   | D = 15   |
|-----|-------|-------|-------|-------|----------|----------|
| 10  | 1.29  | 1.83  | 3.03  | 9.16  | $\infty$ | $\infty$ |
| 20  | 1.12  | 1.25  | 1.44  | 1.74  | 2.38     | 6.45     |
| 30  | 1.07  | 1.15  | 1.27  | 1.38  | 1.59     | 2.22     |
| 40  | 1.05  | 1.13  | 1.17  | 1.25  | 1.39     | 1.70     |
| 50  | 1.04  | 1.08  | 1.13  | 1.21  | 1.30     | 1.49     |
| 100 | 1.02  | 1.03  | 1.06  | 1.09  | 1.12     | 1.19     |

• Careful use of correlated  $\chi^2$  with N data samples of D data

#### unless $N > \max(D^2, 10(D+1))$

- if N is small: one can try to model the correlations
- it is reasonable to use an uncorrelated  $\chi^2$  fit and estimate the errors on the parameters by bootstrap
- it may be difficult to estimate the goodness of fit

#### Conclusions

- Autocorrelations in Markov chains
  - Autocorrelation function
  - Binning
  - Resampling : jackknife, bootstrap
- Correlations among observables
- References
  - B. Berg "Markov Chain Monte Carlo Simulations and their Statistical Analysis"
  - Numerical Recipes
  - M. C. K. Yang and David H. Robinson, Understanding and Learning Statistics by Computer, (World Scientific, Singapore, 1986)
  - Ulli Wolff, "Monte Carlo errors with less errors", hep-lat/0306017
- Tutorial
  - go to http://www-zeuthen.desy.de/~herdoiza/tutorial