Computing correlation functions

LAP08, DESY Zeuthen

Andreas Jüttner

Institut für Kernphysik

08-09.10.2008

The idea of these lectures

Assume you were given a set of gauge configurations

- you want to compute basic observables like
 - pion mass
 - pion decay constant
 - pion electromagnetic form factor
 - ...
- what has to be done to compute these observables?
- these lectures should provide and explain some tools that are necessary to complete this task
- by no means comprehensive!

Content

1st lecture

- orrelation functions
- quark propagators
 - types of quark sources
 - inversion algorithm
 - sequential sources
 - smearing
 - boundary conditions
- ratios of correlation functions
- the Dublin approach
- deflation

2nd lecture

- implementation of these ideas in chroma
- o do it yourself

Assume generic interpolating operator $O_{\Gamma}^{12}(x) = \bar{\psi}_a(x)\Gamma\psi_b(x)$:

$$C_{2}(\vec{p}, x_{0}) = \sum_{\vec{x}} e^{-i\vec{p}\vec{x}} \left\langle O_{\Gamma'}^{12}(\vec{x}, x_{0}) \left(O_{\Gamma}^{12}(\vec{0}, 0) \right)^{\dagger} \right\rangle_{\text{QCD}}$$

Assume generic interpolating operator $O_{\Gamma}^{12}(x) = \bar{\psi}_a(x)\Gamma\psi_b(x)$:

$$\begin{array}{lll} C_{2}(\vec{\rho},x_{0}) & = & \sum\limits_{\vec{x}} e^{-i\vec{\rho}\vec{x}} \left\langle O_{\Gamma'}^{12}(\vec{x},x_{0}) \left(O_{\Gamma}^{12}(\vec{0},0) \right)^{\dagger} \right\rangle_{\rm QCD} \\ & = & \sum\limits_{\vec{x}} e^{-i\vec{\rho}\vec{x}} \left\langle {\rm Tr} \left\{ S_{1}^{\dagger}(\vec{x},x_{0};\vec{0},0)\gamma_{5}\Gamma' S_{2}(\vec{x},x_{0};\vec{0},0)\gamma_{0}\Gamma^{\dagger}\gamma_{0}\gamma_{5} \right\} \right\rangle_{\rm QCD} \end{array}$$

Assume generic interpolating operator $O_{\Gamma}^{12}(x) = \bar{\psi}_a(x)\Gamma\psi_b(x)$:

$$\begin{split} C_{2}(\vec{p}, x_{0}) &= \sum_{\vec{x}} e^{-i\vec{p}\vec{x}} \left\langle O_{\Gamma'}^{12}(\vec{x}, x_{0}) \left(O_{\Gamma}^{12}(\vec{0}, 0) \right)^{\dagger} \right\rangle_{\text{QCD}} \\ &= \sum_{\vec{x}} e^{-i\vec{p}\vec{x}} \left\langle \operatorname{Tr} \left\{ S_{1}^{\dagger}(\vec{x}, x_{0}; \vec{0}, 0) \gamma_{5} \Gamma' S_{2}(\vec{x}, x_{0}; \vec{0}, 0) \gamma_{0} \Gamma^{\dagger} \gamma_{0} \gamma_{5} \right\} \right\rangle_{\text{QCD}} \\ &\stackrel{t \to \infty}{=} \frac{1}{E(\vec{p})} |\langle 0| P |\pi \rangle|^{2} e^{-E(\vec{p})T/2} \cosh\left((t - T/2) E(\vec{p}) \right) \end{split}$$

Assume generic interpolating operator $O_{\Gamma}^{12}(x) = \bar{\psi}_a(x)\Gamma\psi_b(x)$:

2pt-function

$$\begin{split} C_{2}(\vec{p}, x_{0}) &= \sum_{\vec{x}} e^{-i\vec{p}\vec{x}} \left\langle O_{\Gamma'}^{12}(\vec{x}, x_{0}) \left(O_{\Gamma}^{12}(\vec{0}, 0) \right)^{\dagger} \right\rangle_{\text{QCD}} \\ &= \sum_{\vec{x}} e^{-i\vec{p}\vec{x}} \left\langle \text{Tr} \left\{ S_{1}^{\dagger}(\vec{x}, x_{0}; \vec{0}, 0) \gamma_{5} \Gamma' S_{2}(\vec{x}, x_{0}; \vec{0}, 0) \gamma_{0} \Gamma^{\dagger} \gamma_{0} \gamma_{5} \right\} \right\rangle_{\text{QCD}} \\ &\stackrel{t \to \infty}{=} \frac{1}{E(\vec{p})} |\langle 0| P | \pi \rangle|^{2} e^{-E(\vec{p})T/2} \cosh\left((t - T/2) E(\vec{p}) \right) \end{split}$$

more complicated if disconnected contribution

$$\begin{split} C_{3}(\dots) &= \sum_{\vec{x},\vec{y}} e^{i\vec{p}_{f}\cdot(\vec{x}-\vec{y})} e^{i\vec{p}_{i}\cdot\vec{x}} \langle O_{\Gamma'}(\vec{x},x_{0}) j_{\Gamma_{j}}(\vec{y},y_{0}) O_{\Gamma}^{\dagger}(\vec{0},0) \rangle_{\text{QCD}} \\ &= \sum_{\vec{x},\vec{y}} e^{i\vec{p}_{f}(\vec{x}-\vec{y})} e^{i\vec{p}_{i}\vec{y}} \langle \operatorname{Tr} \left\{ S_{1}(\vec{0},0;\vec{x},x_{0})\Gamma' S_{3}(\vec{x},x_{0};\vec{y},y_{0})\Gamma_{j}S_{2}(\vec{y},y_{0};\vec{0},0)\gamma_{0}\Gamma^{\dagger}\gamma_{0} \right\} \rangle_{\text{QCD}} \\ &= \frac{Z_{j}Z_{f}}{4E_{f}E_{f}} \langle \Gamma'(\vec{p}_{f}) | j_{\Gamma_{j}}(0) | \Gamma_{\Gamma}(\vec{p}_{i}) \rangle_{\text{QCD}} \\ &\times \left\{ \theta(x_{0}-y_{0}) e^{-E_{i}y_{0}-E_{f}(x_{0}-y_{0})} - \theta(y_{0}-x_{0}) e^{-E_{i}(T-y_{0})-E_{f}(y_{0}-x_{0})} \right\} \end{split}$$

Gamma matrices and symmetries

State	$I^G(J^{PC})$	Operator		
$\operatorname{Scalar}(\sigma)$	$1^{-}(0^{++})$	$\overline{u}(x)d(x)$		
	$1^{-}(0^{++})$	$\overline{u}(x)\gamma_4 d(x)$		
Pseudoscalar	$1^{-}(0^{-+})$	$\overline{u}(x)\gamma_5 d(x)$		
	$1^{-}(0^{-+})$	$\overline{u}(x)\gamma_4\gamma_5 d(x)$		
Vector	$1^+(1^{})$	$\overline{u}(x)\gamma_i d(x)$		
	$1^+(1^{})$	$\overline{u}(x)\gamma_i\gamma_4 d(x)$		
Axial (a_1)	$1^{-}(1^{++})$	$\overline{u}(x)\gamma_i\gamma_5 d(x)$		
$\operatorname{Tensor}(b_1)$	$1^+(1^{+-})$	$\overline{u}(x)\gamma_i\gamma_j d(x)$		

Gupta, hep-lat/9807028

Also very helpful: symmetry transformation of lattice propagators

Bernard, Lectures given at TASI '89

- $P: \qquad Q(x,y,[U]) = \gamma^0 Q(x^p,y^p,[U]^p) \gamma^0$
- $T: \qquad Q(x,y,[U]) = \gamma^0 \gamma^5 Q(x^\tau,y^\tau,[U]^\tau) \gamma^5 \gamma^0$
- $C: \qquad Q(x,y,[U]) = \mathcal{C}\widetilde{Q}(y,x,[U]^c)\mathcal{C}^{-1}$
- $H: \qquad Q(x,y,[U]) = \gamma_5 Q^{\dagger}(y,x,[U]) \gamma_5$
- $CH: \qquad Q(x,y,[U]) = \mathcal{C}\gamma_5 Q^*(x,y,[U]^c)\gamma_5 \mathcal{C}^{-1} ,$

where
$$C = \gamma_0 \gamma_2$$
 and $C \gamma_\mu C = -\gamma_\mu^T$

Definition of the propagator $S(\vec{y}, y_0; \vec{x}, x_0)$ - the inverse of the Dirac operator:

$$\underbrace{\mathsf{D}^{ab}_{\alpha\beta}(z,y)}_{(V.43\cdot\mathbb{C})^2} \mathcal{S}^{bc}_{\beta\gamma}(y,x) = \delta(z-x)\delta^{ac}\delta_{\alpha\gamma}$$

e.g. $24^3 \times 64 \times 4 \times 3 = 10616832$ \rightarrow huge!!!! "naive" numerical inversion is impossible

• exact solution: solve N linear problems

$$Dz_1 = e_1, \ldots, Dz_N = e_N$$

where e_i is *i*th column of id_N result: $N \times N$ -matrix $S = [z_1, ..., z_N]$ example: I think nobody has ever done it for LQCD

• exact solution: solve N linear problems

$$Dz_1 = e_1, \ldots, Dz_N = e_N$$

where e_i is *i*th column of id_N result: $N \times N$ -matrix $S = [z_1, ..., z_N]$ example: I think nobody has ever done it for LQCD

• in practice only a subset n of the N inversions

$$Dz_1 = v_1, \ldots, Dz_N = v_n$$

result: $N \times n$ -matrix SV with $V = [v_1, \ldots, v_n]$

example: point source propagator (similarly for smeared source props):

 $N \times 12$ -matrix with e.g. $V = [e_1, \dots, e_{12}]$ this corresponds to a propagator from one space-time point to all others (point-to-all propagator)

• exact solution: solve N linear problems

$$Dz_1 = e_1, \ldots, Dz_N = e_N$$

where e_i is *i*th column of id_N result: $N \times N$ -matrix $S = [z_1, ..., z_N]$ example: I think nobody has ever done it for LQCD

• in practice only a subset n of the N inversions

$$Dz_1 = v_1, \ldots, Dz_N = v_n$$

result: $N \times n$ -matrix SV with $V = [v_1, \dots, v_n]$

example: point source propagator (similarly for smeared source props):

 $N \times 12$ -matrix with e.g. $V = [e_1, \dots, e_{12}]$ this corresponds to a propagator from one space-time point to all others (point-to-all propagator)

• this discards valuable information encoded in the gauge configurations

• exact solution: solve N linear problems

$$Dz_1 = e_1, \ldots, Dz_N = e_N$$

where e_i is *i*th column of id_N result: $N \times N$ -matrix $S = [z_1, ..., z_N]$ example: I think nobody has ever done it for LQCD

• in practice only a subset n of the N inversions

$$Dz_1 = v_1, \ldots, Dz_N = v_n$$

result: $N \times n$ -matrix SV with $V = [v_1, \dots, v_n]$

example: point source propagator (similarly for smeared source props):

 $N \times 12$ -matrix with e.g. $V = [e_1, \dots, e_{12}]$ this corresponds to a propagator from one space-time point to all others (point-to-all propagator)

this discards valuable information encoded in the gauge configurations

idea: look for W such that (SV)W = S; i.e. VW = 1 (impossible since rank of V, W would be smaller than N in practical implementations)

• exact solution: solve N linear problems

$$Dz_1 = e_1, \ldots, Dz_N = e_N$$

where e_i is *i*th column of id_N result: $N \times N$ -matrix $S = [z_1, ..., z_N]$ example: I think nobody has ever done it for LQCD

• in practice only a subset *n* of the *N* inversions

$$Dz_1 = v_1, \ldots, Dz_N = v_n$$

result: $N \times n$ -matrix SV with $V = [v_1, \dots, v_n]$

example: point source propagator (similarly for smeared source props):

 $N \times 12$ -matrix with e.g. $V = [e_1, \dots, e_{12}]$ this corresponds to a propagator from one space-time point to all others (point-to-all propagator)

this discards valuable information encoded in the gauge configurations

idea: look for W such that (SV)W = S; i.e. VW = 1 (impossible since rank of V, W would be smaller than N in practical implementations)

• but: $X = VW \approx 1$ through a Monte Carlo method for choosing V and W

before studying different choices for the quark source let's look at how to compute the propagator given a source b

the generic problem: solve

$$Ax = b$$

for the vector *x* this is a minimisation problem: consider

$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$$

the minimum of this function is

$$f'(x) = 0 = \frac{1}{2}(Ax + x^T A) - b$$

so for positive definite and symmetric A the minimum of f(x) is what we are looking for Ax = b

entertaining reading: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain Edition $1\frac{1}{4}$ by Jonathan Richard Shewchuk

• the problem of finding x is equivalent to find the extremum of a quadratic form

- correlation functions in terms of propagators \checkmark
- $\bullet\,$ algorithm for computation of correlators $\checkmark\,$
- choosing a clever quark source

- $\bullet\,$ correlation functions in terms of propagators $\checkmark\,$
- $\bullet\,$ algorithm for computation of correlators $\checkmark\,$
- choosing a clever quark source
 - point source (nothing to say here)
 - noise source
 - smeared source
 - sequential sources

Noise source

Comp. Phys. Comm. 78 (1994) 256-264

- remember: look for W such that (SV)W = S; i.e. $VW \approx 1$
- the approximation $X = VW \approx 1$ is reached through e.g. a set of individually, identically distributed random numbers $\{\mu_{nl}\}$ where n = 1, ..., N, l = 1, ..., L and which satisfy

$$\mathsf{E}[\mu_{mk}(\mu_{nl})^*] = \delta_{mn}\delta_{kl}$$

(note: $E[\cdot]$ is expectation value over a series of experiments)

- we construct V as $V = \frac{1}{\sqrt{L}} [\mu_{nl}]$
- and $W \equiv (V^*)^T$ to construct

$$X \equiv VW$$

with elements
$$x_{mn} = \frac{1}{L} \sum_{l=1}^{L} \mu_{ml} \mu_{nl}^*$$

Noise source

Comp. Phys. Comm. 78 (1994) 256-264

- remember: look for W such that (SV)W = S; i.e. $VW \approx 1$
- the approximation $X = VW \approx 1$ is reached through e.g. a set of individually, identically distributed random numbers $\{\mu_{nl}\}$ where n = 1, ..., N, l = 1, ..., L and which satisfy

$$\mathsf{E}[\mu_{mk}(\mu_{nl})^*] = \delta_{mn}\delta_{kl}$$

(note: $E[\cdot]$ is expectation value over a series of experiments)

- we construct V as $V = \frac{1}{\sqrt{L}} [\mu_{nl}]$
- and $W \equiv (V^*)^T$ to construct

$$X \equiv VW$$

with elements $x_{mn} = \frac{1}{L} \sum_{l=1}^{L} \mu_{ml} \mu_{nl}^*$

• The noise-average has the following properties

$$\begin{aligned} \mathsf{E}[\mathbf{x}_{mn}] &= \delta_{mn} \\ \mathsf{E}[(\mathbf{x}_{mn} - \delta_{mn})(\mathbf{x}_{pq}^* - \delta_{pq})] &= 0 & \text{if } (mn) \neq (pq) \text{ or } (mn) \neq (qp) \\ \mathsf{E}[|\mathbf{x}_{mn} - \delta_{mn}|^2] &= \frac{1}{L} & \text{if } m \neq n \end{aligned}$$

 let's look at the trace of the propagator (we always look at traces of objects constructed from propagators...)

E[Tr(SX)] = var[Tr(SX)] =

 let's look at the trace of the propagator (we always look at traces of objects constructed from propagators...)

$$E[Tr(SX)] = Tr(S)$$

var[Tr(SX)] =

 let's look at the trace of the propagator (we always look at traces of objects constructed from propagators...)

$$E[\operatorname{Tr}(SX)] = Tr(S)$$

$$var[\operatorname{Tr}(SX)] = \sum_{\substack{m,n=1\\m\neq n}} \left\{ \frac{|s_{mn}|^2}{L} + s_{mn}s_{nm}^*E[x_{nm}^2] \right\} + \sum_{n=1}^N |s_{nn}|^2 E[|x_{nn}-1|^2]$$

• choices for the noise source which minimise the variance:

• Z(2)-noise:
$$\mathcal{P}[\eta_{nl} = 1] = \frac{1}{2}$$
 and $\mathcal{P}[\eta_{nl} = -1] = \frac{1}{2}$
since $var[Tr(SX^{Z(2)})] = \sum_{\substack{m \neq n}} \frac{|s_{mn}|^2 + s_{mn}s_{nm^*}}{L}$

 let's look at the trace of the propagator (we always look at traces of objects constructed from propagators...)

$$E[\operatorname{Tr}(SX)] = Tr(S)$$

$$var[\operatorname{Tr}(SX)] = \sum_{\substack{m,n=1\\m\neq n}} \left\{ \frac{|s_{mn}|^2}{L} + s_{mn}s_{nm}^*E[x_{nm}^2] \right\} + \sum_{n=1}^N |s_{nn}|^2 E[|x_{nn}-1|^2]$$

1/2

• choices for the noise source which minimise the variance:

•
$$Z(2)$$
-noise: $\mathcal{P}[\eta_{nl} = 1] = \frac{1}{2}$ and $\mathcal{P}[\eta_{nl} = -1] =$
since $var[Tr(SX^{Z(2)})] = \sum_{m \neq n} \frac{|s_{mn}|^2 + s_{mn}s_{nm^*}}{L}$

•
$$Z(J)$$
-noise $\mathcal{P}[\mu_{nl}^J = e^{2\pi l j/J}] = \frac{1}{J}$
since $var[\mathcal{T}r(SX^{Z(J)})] = \sum_{m \neq n} \frac{|smp|^2}{L}$

• difficult to say which one is better - depends on term $\sum_{m \neq n} s_{mn} s_{nm}^*$

Constructing meson correlation functions from noise source props

• 2pt function from point source:

$$C_{2}(\vec{0},t) = \sum_{\vec{x}} \left\langle \operatorname{Tr} \left\{ S_{1}^{+}(\vec{x},x_{0};\vec{0},0)\gamma_{5}\Gamma' S_{2}(\vec{x},x_{0};\vec{0},0)\gamma_{0}\Gamma^{+}\gamma_{0}\gamma_{5} \right\} \right\rangle_{\mathrm{QCD}}$$

Constructing meson correlation functions from noise source props

• 2pt function from point source:

$$C_{2}(\vec{0},t) = \sum_{\vec{x}} \left\langle \operatorname{Tr} \left\{ S_{1}^{+}(\vec{x},x_{0};\vec{0},0)\gamma_{5}\Gamma' S_{2}(\vec{x},x_{0};\vec{0},0)\gamma_{0}\Gamma^{+}\gamma_{0}\gamma_{5} \right\} \right\rangle_{\mathrm{QCD}}$$

• 2pt-function from noise source (one-end trick Phys. Rev. D59 074503 (1999)):

$$\begin{split} C_2(\vec{0},t) &= \sum_{\vec{x},\vec{y}} \left\langle \mathrm{Tr} \left\{ S_1(\vec{y},y_0;\vec{x},x_0) \Gamma' S_2(\vec{x},x_0;\vec{y},y_0) \gamma_0 \Gamma^{\dagger} \gamma_0 \right\} \right\rangle_{\mathrm{QCD}} \\ &\approx \sum_{\vec{y}} \frac{1}{L} \sum_{I} \left\langle \mathrm{Tr} \left\{ \Psi_{1,I}(\vec{y},y_0;x_0) \left(\Psi_{2,I}^{\gamma_5 \Gamma'}(\vec{y},y_0;x_0) \right)^{\dagger} \gamma_5 \gamma_0 \Gamma^{\dagger} \gamma_0 \right\} \right\rangle_{\mathrm{QCD}} \end{split}$$

where

$$\begin{split} \Psi_{1,l}(\vec{y}, y_0; x_0) &= \sum_{\vec{x}} [S_1(\vec{y}, y_0; \vec{x}, x_0)]_{a\alpha b\beta} \underbrace{[\eta_l(\vec{x}, x_0)]_{b,f}}_{\text{noise source}} \\ \Psi_{2,l}^{\gamma_5 \Gamma}(\vec{y}, y_0; x_0) &= \sum_{\vec{x}} S_2(\vec{y}, y_0; \vec{x}, x_0) \underbrace{\gamma_5 \Gamma \eta(\vec{x}, x_0)}_{\text{noise source}} \end{split}$$

$$\begin{array}{lll} i) & \Psi_{l}(\vec{y}, y_{0}; x_{0}) & = & \sum_{\vec{x}} S(\vec{y}, y_{0}; \vec{x}, x_{0}) \eta_{l}(\vec{x}, x_{0}) \\ ii) & \Psi_{l}^{\gamma_{5}\Gamma}(\vec{y}, y_{0}; x_{0}) & = & \sum_{\vec{x}} S(\vec{y}, y_{0}; \vec{x}, x_{0}) \gamma_{5} \Gamma \eta_{l}(\vec{x}, x_{0}) \\ \end{array}$$

• case
$$\Gamma = \gamma_5 \rightarrow \Psi_1^{\gamma_5 \gamma_5} = \Psi_1$$
:
need $\delta_{\kappa\lambda} \delta_{c,d} \delta(\vec{x} - \vec{z}) = \frac{1}{L} \sum_l \eta_l(\vec{x})_{\kappa,c} \eta_l^{\dagger}(\vec{z})_{\lambda,d}$

• general case: $\delta_{c,d}\delta(\vec{x}-\vec{z}) = \frac{1}{L}\sum_{l}\eta_{l}(\vec{x})_{c}\eta_{l}^{\dagger}(\vec{z})_{d}$

in this case we need four noise vectors (spin explicit) in order to properly represent the gamma-structure

- remark for implementation: use your old inverter for noise source most codes expect 3 × 4 inversions. Here only 1 or 4 inversions, respectively, are necessary. Use standard inverter but skip inversion if norm of the source for a given *spin – color*-index vanishes
- I have secretly assumed that the noise source is limited to one time slice. This is called "dilution". The noise can be diluted more (spin-explicit, color-explicit) or e.g. onto the odd and even site on the lattice.

Dilution in time is known to increase the signal/noise in correlation functions

source type	# of inversions	
point source	12	-
single noise vector:	1	times the number of hits
spin explicit noise vector:	4	times the number of hits

study on a unit gauge configuration JHEP 0808:086,2008

source type	# of inversions	
point source	12	-
single noise vector:	1	times the number of hits
spin explicit noise vector:	4	times the number of hits

some experience:

 hit-average and gauge-average are often commutative in practice it may suffice to generate only few noise vectors per configuration (since the gauge noise is larger than the noise from the stochastic source)

source type	# of inversions	
point source	12	-
single noise vector:	1	times the number of hits
spin explicit noise vector:	4	times the number of hits

some experience:

- hit-average and gauge-average are often commutative in practice it may suffice to generate only few noise vectors per configuration (since the gauge noise is larger than the noise from the stochastic source)
- when 'hitting' various times on a gauge configuration move the source along the 0-direction; this reduces correlation effects originating in the gauge configuration

source type	# of inversions	
point source	12	-
single noise vector:	1	times the number of hits
spin explicit noise vector:	4	times the number of hits

some experience:

- hit-average and gauge-average are often commutative in practice it may suffice to generate only few noise vectors per configuration (since the gauge noise is larger than the noise from the stochastic source)
- when 'hitting' various times on a gauge configuration move the source along the 0-direction; this reduces correlation effects originating in the gauge configuration
- how well the noise source works compared to the point source seems to be a function of the volume, the quark masses and the observable under investigation.
 example (JHEP 0807:112,2008):

$16^3 \times 32 \times 16$ DWF, $a^{-1} \approx 1.7$ GeV,	$24^3 \times 64 \times 16$ DWF, $a^{-1} \approx 1.7$ GeV,
$m_{\pi} pprox$ 700MeV	$m_{\pi} pprox 330 { m MeV}$
noise source achieves same stat. er-	noise source achieves same stat. er-
ror on m_{π} at half of the price	ror on m_{π} at 1/12th of the price

Yet another source type: Gaussian smearing

Güsken et al.; NPB (Proc. Suppl.) 17 (1990) 361-364

- motivation: phenomenologically immitate what may or may not be the hadron wave function
- thus increase overlap with desired hadronic state
- similar to point source, but smearing out the delta function
- this corresponds to smear out the fermion fields

$$\tilde{\psi}(\vec{x},t) = \sum_{x'} F(\vec{x},\vec{x}')\psi(\vec{x}',t)$$

Gaussian smearing:

$$F(\mathbf{x},\mathbf{x}') = \delta_{\mathbf{x},\mathbf{x}'} + \alpha H(\mathbf{x},\mathbf{x}')$$

with the hopping matrix

$$H(\boldsymbol{x},\boldsymbol{x}') = \sum_{\mu=1}^{3} \left\{ U_{\mu}(\boldsymbol{x}) \delta_{\boldsymbol{x}',\vec{\boldsymbol{x}}+\hat{\mu}} + U_{\mu}^{\dagger}(\boldsymbol{x}-\hat{\mu}) \delta_{\boldsymbol{x}',\boldsymbol{x}-\hat{\mu}} \right\}$$

with coupling α between nearest neighbours

- iterate this starting from a point source
- in the free case approximately gaussian shape and rotationally invariant

Still not enough sources: sequential source propagators

how to construct 3pt-functions?

- problem here: naively one would need an all-to-all propagator
- way out: sequential source propagator Nucl. Phys. B316 (1989) 355

$$\tilde{S}_{13}(\vec{y}, y_0; \vec{p}, x_0; \vec{0}, 0) = \sum_{\vec{x}} S_3(\vec{y}, y_0; \vec{x}, x_0) \underbrace{\gamma_5 \Gamma' \gamma_5 S_1(\vec{x}, x_0, \vec{0}, 0) e^{i\vec{p}\vec{x}}}_{\text{source}}$$

Still not enough sources: sequential source propagators

$$\tilde{S}_{13}(\vec{y}, y_0; \vec{p}_f, x_0; \vec{0}, 0) = \sum_{\vec{x}} S_3(\vec{y}, y_0; \vec{x}, x_0) \underbrace{\gamma_5 \Gamma' \gamma_5 S_1(\vec{x}, x_0, \vec{0}, 0) e^{i\vec{p}_f \vec{x}}}_{\text{source}}$$

can be solved by

$$\sum_{z} D(\vec{z}, z_{0}; \vec{z}', z'_{0}) \tilde{S}(\vec{z}', z'_{0}, \vec{0}, 0) = \sum_{\vec{y}, y_{0}} e^{i \vec{p}_{f} \vec{y}} \delta_{z, y} \gamma_{5} \Gamma^{\dagger} \gamma_{5} S(y, 0)$$

with the source term

$$\sum_{\vec{y}, y_0} e^{i\vec{p}_t \vec{y}} \delta_{z, y} \gamma_5 \Gamma^{\dagger} \gamma_5 S(y, 0) = \begin{cases} 0 & z_4 \neq \text{sink time slice} \\ \gamma_5 \Gamma^{\dagger} \gamma_5 G(\vec{z}, z_0, \vec{0}, 0) e^{i\vec{p}\vec{z}} & z_4 = \text{sink time slice} \end{cases}$$

- new inversions for each Γ and Fourier mode e^{iβx}
- straight forward to implement with noise source
- once Š has been constructed the three point function can be contracted like a two-point function

Comments on 3pt functions

$$\begin{aligned} \bullet \ C_{3} &= \sum_{\vec{x}_{f},\vec{x}} e^{i\vec{p}_{f}\cdot(\vec{x}_{f}-\vec{x})} e^{i\vec{p}_{j}\cdot\vec{x}} \langle \ O_{f}(t_{f},\vec{x}_{f}) j_{\Gamma_{j}}(t,\vec{x}) \ O_{i}^{\dagger}(t_{i},\vec{0}) \rangle \\ &= \sum_{\vec{x},\vec{y}} e^{i\vec{p}_{f}(\vec{x}-\vec{y})} e^{i\vec{p}_{i}\vec{y}} \langle \operatorname{Tr} \left\{ S_{1}(\vec{0},0;\vec{x},x_{0})\Gamma' S_{3}(\vec{x},x_{0};\vec{y},y_{0})\Gamma_{j}S_{2}(\vec{y},y_{0};\vec{0},0)\gamma_{0}\Gamma^{\dagger}\gamma_{0}) \right\} \rangle \\ &= \sum_{\vec{x},\vec{y}} e^{-i\vec{\ell}\rho_{f}-\rho_{i})\vec{y}} \langle \operatorname{Tr} \left\{ \left(\tilde{S}_{31}(\vec{y},y_{0};\vec{\rho}_{i},x_{0};\vec{0},0) \right)^{\dagger} \gamma_{5}\Gamma_{j}S_{2}(\vec{y},y_{0};\vec{0},0)\gamma_{0}\Gamma^{\dagger}\gamma_{0}\gamma_{5}) \right\} \rangle \end{aligned}$$

chroma does not use the γ_0 - so there might be sign issues

Comments on 3pt functions

$$\begin{aligned} \bullet \ C_{3} &= \sum_{\vec{x}_{f},\vec{x}} e^{i\vec{p}_{f}(\vec{x}_{f}-\vec{x})} e^{i\vec{p}_{i}\cdot\vec{x}} \langle \ O_{f}(t_{f},\vec{x}_{f}) j_{\Gamma_{j}}(t,\vec{x}) \ O_{i}^{\dagger}(t_{i},\vec{0}) \rangle \\ &= \sum_{\vec{x},\vec{y}} e^{i\vec{p}_{f}(\vec{x}-\vec{y})} e^{i\vec{p}_{i}\vec{y}} \langle \operatorname{Tr} \left\{ S_{1}(\vec{0},0;\vec{x},x_{0})\Gamma' S_{3}(\vec{x},x_{0};\vec{y},y_{0})\Gamma_{j}S_{2}(\vec{y},y_{0};\vec{0},0)\gamma_{0}\Gamma^{\dagger}\gamma_{0}) \right\} \rangle \\ &= \sum_{\vec{x},\vec{y}} e^{-i(\vec{\rho}_{f}-\rho_{i})\vec{y}} \langle \operatorname{Tr} \left\{ \left(\tilde{S}_{31}(\vec{y},y_{0};\vec{\rho}_{i},x_{0};\vec{0},0) \right)^{\dagger} \gamma_{5}\Gamma_{j}S_{2}(\vec{y},y_{0};\vec{0},0)\gamma_{0}\Gamma^{\dagger}\gamma_{0}\gamma_{5}) \right\} \rangle \end{aligned}$$

chroma does not use the γ_0 - so there might be sign issues • we extract ME of type $\langle P_f(\vec{p}_f) | V_4(0) | P_i(\vec{p}_i) \rangle$

It turns out to be advantageous to extract them from ratios like e.g.

$$R_{1,P_{i}P_{f}}(\vec{p}_{i},\vec{p}_{f}) = 4\sqrt{E_{i}E_{f}}\sqrt{\frac{C_{P_{i}P_{f}}(t,\vec{p}_{i},\vec{p}_{f}) C_{P_{f}P_{i}}(t,\vec{p}_{i},\vec{p}_{i})}{C_{P_{i}}(T/2,\vec{p}_{i}) C_{P_{f}}(T/2,\vec{p}_{i})}},$$

$$R_{2,P_{i}P_{f}}(\vec{p}_{i},\vec{p}_{f}) = 2\sqrt{E_{i}E_{f}}\sqrt{\frac{C_{P_{i}P_{f}}(t,\vec{p}_{i},\vec{p}_{i}) C_{P_{f}P_{i}}(t,\vec{p}_{i},\vec{p}_{i})}{C_{P_{i}P_{i}}(t,\vec{p}_{i},\vec{p}_{i}) C_{P_{f}P_{f}}(t,\vec{p}_{i},\vec{p}_{i})}},$$
(1)

$$R_{3,P_iP_f}(\vec{p}_i,\vec{p}_f) = 4\sqrt{E_iE_f} \frac{C_{P_iP_f}(t,\vec{p}_i,\vec{p}_f)}{C_{P_f}(T/2,\vec{p}_f)} \sqrt{\frac{C_{P_i}(T/2-t,\vec{p}_i)C_{P_f}(t,\vec{p}_i)C_{P_f}(T/2,\vec{p}_f)}{C_{P_f}(T/2-t,\vec{p}_f)C_{P_i}(t,\vec{p}_i)C_{P_i}(T/2,\vec{p}_f)}}.$$

- sometimes cancellation of renormalisation factor
- plateaus look different optimise!
- cancellation of correlations → better signal
- time-dependence cancels these ratios should be constant for large euclidean separations

Twisted boundary conditions

periodic bc's

$$\psi(\mathbf{x}_i + \mathbf{L}) = \psi(\mathbf{x}_i)$$
$$\vec{p}_{quark} = \vec{n} \frac{2\pi}{L}$$
$$\mathbf{E}_{\pi} = \sqrt{m_{\pi}^2 + (\vec{n} \frac{2\pi}{L})^2}$$

PLB 595 (2004) 408, PLB 593 (2004) 82, PLB 609 (2005) 73, PLB 632 (2006) 313

Twisted boundary conditions

PLB 609 (2005) 73, PLB 632 (2006) 313

Twisted boundary conditions - applications

• pion form factor $\langle \pi(p') | V_{\mu}^{\text{elmag}} | \pi(p) \rangle$

Twisted boundary conditions - applications

• pion form factor $\langle \pi(p') | V_{\mu}^{\text{elmag}} | \pi(p) \rangle$

Implementation of partially twisted BC

• twisted bc's
$$\psi(x) = e^{i \frac{\vec{\theta} \cdot \vec{x}}{L}} \tilde{\psi}(x)$$

• Wilson's hopping term:

$$\overline{\tilde{\psi}}(x) \left[e^{i\frac{a\theta_i}{L}} U_i(x)(1-\gamma_i)\tilde{\psi}(x+\hat{i}) + e^{-i\frac{a\theta_i}{L}} U_i^{\dagger}(x-\hat{i})(1+\gamma_i)\tilde{\psi}(x-\hat{i}) \right]$$

Implementation of partially twisted BC

• twisted bc's
$$\psi(x) = e^{i \frac{\vec{\theta} \cdot \vec{x}}{L}} \tilde{\psi}(x)$$

• Wilson's hopping term:

$$\overline{\tilde{\psi}}(x) \left[e^{i\frac{\partial \theta_i}{L}} U_i(x)(1-\gamma_i) \tilde{\psi}(x+\hat{i}) + e^{-i\frac{\partial \theta_i}{L}} U_i^{\dagger}(x-\hat{i})(1+\gamma_i) \tilde{\psi}(x-\hat{i}) \right]$$

equivalent: replace the link variables

$$\{U_i(x)\} \to \{e^{i\frac{a\theta_i}{L}}U_i(x)\}$$

inverting on phase-shifted gauge field encodes the momentum shift for the valence quarks

Applicable to other discretizations (e.g. DWF)

Kinematics with twisted bc's

2pt-function

$$E_{\pi} = \sqrt{m_{\pi}^2 + (\vec{n}_{L}^{2\pi} + \frac{\vec{\theta}_{u} - \vec{\theta}_{d}}{L})^2}$$

$$q^{2} = (p_{i} - p_{f})^{2} = \left\{ [E_{i}(\vec{p}_{i}) - E_{f}(\vec{p}_{f})]^{2} - \left[(\vec{p}_{\text{FT},i} + \vec{\theta}_{i}/L) - (\vec{p}_{\text{FT},f} + \vec{\theta}_{f}/L) \right]^{2} \right\}$$

- watch out for relative signs of twist angles when you construct the 3pt function
- changing directions of twists can decrease correlation effects
- keep track of direction of twist correlators involving currents in spacial directions depend on the momentum

Some newer developments for computing propagators

- light quark physics is dominated by the low lying eigen modes of the Dirac operator
- noise from noise source propagators often still too large
- idea: separate treatment of low modes and high modes let $Q = \gamma_5 D$ be the herm. dirac operator

$$Q = Q_1 + Q_2 = \sum_{i=1}^{N_{ev}} \lambda_i v^{(i)} v^{(i)\dagger} + \sum_{i=N_{ev}+1}^{N} \lambda_i v^{(i)} v^{(i)\dagger}$$

exact or other inexact treatment treat as a correction by noisey estimator

- exact treatment of the lowmodes: Comp. Phys Comm. 172 (2005) 145162
- inexact treatment of the lowmodes: JHEP07 (2007) 081
- the orthogonal complement can be corrected for by noise source techniques

The Dublin approach

Comp. Phys Comm. 172 (2005) 145162

• also two pieces for the quark propagator $Q^{-1} = \tilde{Q}_0 + \tilde{Q}_1$: \tilde{Q}_0 is low mode part and $\tilde{Q}_1 = Q^{-1} \mathcal{P}_1$

$$\mathcal{P}_1 = 1 - \mathcal{P}_0 = 1 - \sum_{j=1}^{N_{ev}} v^{(j)} v^{j+1}$$

- correct for Q
 ₁ via N_d × L diluted noise vectors {(η₁⁽¹⁾,...,η_L⁽¹⁾),...,(η₁^(N_d),...,η_L^(N_d))} (due to diluation the noise vectors are mutually orthogonal before taking the noise average)
- the hybrid estimate for the all-to-all prop (for a single noise vector then is $\sum_{i=1}^{N_{ev+N_d}} u^{(i)}(\vec{x}, x_0) w^{(i)}(\vec{y}, y_0)^{\dagger} \gamma_5$ where

$$\begin{split} \mathbf{w}^{(i)} &= \left\{ \frac{\mathbf{v}^{(1)}}{\lambda_1}, \dots, \frac{\mathbf{v}^{(N_{ev})}}{i\lambda_{N_{ev}}}, \eta^{(1)}, \dots, \eta^{(N_d)} \right\} \text{ and } \\ \mathbf{u}^{(i)} &= \left\{ \mathbf{v}^{(1)}, \dots, \mathbf{v}^{(N_{ev})}, \psi^{(1)}, \dots, \psi^{(N_d)} \right\} \end{split}$$

- construct observables from these vectors
- we don't know the optimal number of low modes (they are expensive to construct)
- again volume, quark mass and the observable under consideration do play a role

Approximate quark modes by constant modes

JHEP07 (2007) 081

- Lüscher splits the lattice of spatial extent *L* into *b* sub lattices (domain decomposition)
- on each sub-lattice there are 12 constant modes
- approximation of a global plane wave is already well described by this with small "deficit"
- works if fields are smooth on scale of block size b

Application to QCD

- free field far away from QCD
- helpful observation local coherence:

"... a set of quark fields is referred to as locally coherent if the fields are locally well approximated by a relatively small numer of fields ..."

- this is in fact the case in lattice QCD numerical test compute eigenmodes of DD^t and a domain decomposed subset of these low modes
- test on 64 × 32³-lattice devided into 4⁴-blocks and 12 out of 48 computed eigenmodes selected to construct the domain decomposed sub spaces
- result: the remaining 36 low modes are indeed "coherent" with very small deficits

• open questions:

economic/optimised way to construct deflation modes Lüscher uses relaxation by repeatedly applying the propagator to a random field can one do better?

• can the low modes be applied effectively to the construction of correlation functions like in the Dublin approach?

i	<i>n</i> ₄ <i>n</i> ₃ <i>n</i> ₂ <i>n</i> ₁	Γ _i	equivalent	sink insertion 3pt
0	0000	1	1	a0-a0
1	0001	γ_1	<i>γ</i> 1	a0-rho x 1
2	0010	Y2	Y2	a0-rho y 1
3	0011	$\gamma_1\gamma_2$	$\gamma_1\gamma_2$	a0-b1 z 1
4	0100	γз	γз	a0-rho z
5	0101	$\gamma_1\gamma_3$	Y1Y3	a0-b1 y 1
6	0110	Y2Y3	Y2Y3	a0-b1 x 1
7	0111	$\gamma_1\gamma_2\gamma_3$	$\gamma_5\gamma_4$	a0-pion 2
8	1000	γ4	γ4	a0-a0 2
9	1001	$\gamma_1\gamma_4$	$\gamma_1\gamma_4$	a0-rho x 2
10	1010	Y2Y4	Y2Y4	a0-rho y 2
11	1011	$\gamma_1\gamma_2\gamma_4$	Y3Y5	a0-a1 z 1
12	1100	$\gamma_3\gamma_4$	Y3Y4	a0-rho z 2
13	1101	$\gamma_1\gamma_3\gamma_4$	Y5Y2	a0-a1 y 1
14	1110	Y2Y3Y4	$\gamma_1\gamma_5$	a0-a1 x 1
15	1111	γ_5	γ_5	a0-pion