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The idea of these lectures

Assume you were given a set of gauge configurations

you want to compute basic observables like
pion mass
pion decay constant
pion electromagnetic form factor
...

what has to be done to compute these observables?

these lectures should provide and explain some tools that are necessary to
complete this task

by no means comprehensive!
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Content

1st lecture

correlation functions
quark propagators

types of quark sources
inversion algorithm
sequential sources
smearing
boundary conditions

ratios of correlation functions

the Dublin approach

deflation

2nd lecture

implementation of these ideas in chroma

do it yourself
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Meson correlation functions

OΓ′(~x , x0) O†
Γ
(~0,0)

Assume generic interpolating operator O12
Γ

(x) = ψ̄a(x)Γψb(x):

2pt-function

C2(~p, x0) =
∑

~x
e−i~p~x

〈

O12
Γ′ (~x , x0)

(

O12
Γ

(~0,0)
)†〉

QCD
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more complicated if disconnected contribution
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Meson correlation functions
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Meson correlation functions

jΓj (~y , y0)

OΓ(~x , x0) OΓ′(~0,0)

3pt-function

C3(. . . ) =
∑

~x ,~y
ei~pf ·(~x−~y)ei~pi ·~x 〈OΓ′(~x , x0) jΓj (~y , y0) O†

Γ
(~0,0) 〉QCD

=
∑

~x ,~y
ei~pf (~x−~y)ei~pi~y 〈Tr

{

S1(~0,0;~x , x0)Γ
′S3(~x , x0; ~y , y0)ΓjS2(~y , y0;~0,0)γ0Γ

†γ0)
}

〉QCD

=
Zi Zf
4Ei Ef

〈Γ′(~pf ) | jΓj (0) | ΓΓ(~pi) 〉QCD

×
{

θ(x0 − y0) e−Ei y0−Ef (x0−y0) − θ(y0 − x0) e−Ei (T−y0)−Ef (y0−x0)
}
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Meson correlation functions
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Gamma matrices and symmetries

Gupta, hep-lat/9807028completely symmetric in flavor index

State IG(JPC) Operator

Scalar(σ) 1−(0++) u(x)d(x)

1−(0++) u(x)γ4d(x)

Pseudoscalar 1−(0−+) u(x)γ5d(x)

1−(0−+) u(x)γ4γ5d(x)

Vector 1+(1−−) u(x)γid(x)

1+(1−−) u(x)γiγ4d(x)

Axial (a1) 1−(1++) u(x)γiγ5d(x)

Tensor(b1) 1+(1+−) u(x)γiγjd(x)

Also very helpful: symmetry transformation of lattice propagators
Bernard, Lectures given at TASI ’89

where C = γ0γ2 and CγµC = −γT
µ
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Definition of the propagator S(~y , y0;~x , x0) - the inverse of the Dirac operator:

Dab
αβ(z, y)
︸     ︷︷     ︸

(V ·4·3·C)2

Sbc
βγ(y , x) = δ(z − x)δacδαγ

e.g. 243 × 64 × 4 × 3 = 10616832
→ huge!!!! ”naive” numerical inversion is impossible
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Let’s phrase the problem in more general terms: we want S = D−1 where S is a
N × N-matrix

exact solution: solve N linear problems

Dz1 = e1, . . . ,DzN = eN

where ei is i th column of idN

result: N ×N-matrix S = [z1, . . . , zN ]
example: I think nobody has ever done it for LQCD
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where ei is i th column of idN

result: N ×N-matrix S = [z1, . . . , zN ]
example: I think nobody has ever done it for LQCD

in practice only a subset n of the N inversions

Dz1 = ν1, . . . ,DzN = νn

result: N × n-matrix SV with V = [ν1, . . . , νn]
example: point source propagator (similarly for smeared source props):

N × 12-matrix with e.g. V = [e1, . . . ,e12]
this corresponds to a propagator from one space-time point to all others
(point-to-all propagator)
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Let’s phrase the problem in more general terms: we want S = D−1 where S is a
N × N-matrix

exact solution: solve N linear problems

Dz1 = e1, . . . ,DzN = eN

where ei is i th column of idN

result: N ×N-matrix S = [z1, . . . , zN ]
example: I think nobody has ever done it for LQCD

in practice only a subset n of the N inversions

Dz1 = ν1, . . . ,DzN = νn

result: N × n-matrix SV with V = [ν1, . . . , νn]
example: point source propagator (similarly for smeared source props):

N × 12-matrix with e.g. V = [e1, . . . ,e12]
this corresponds to a propagator from one space-time point to all others
(point-to-all propagator)

this discards valuable information encoded in the gauge configurations

idea: look for W such that (SV )W = S; i.e. VW = 1 (impossible since rank of
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example: point source propagator (similarly for smeared source props):

N × 12-matrix with e.g. V = [e1, . . . ,e12]
this corresponds to a propagator from one space-time point to all others
(point-to-all propagator)

this discards valuable information encoded in the gauge configurations

idea: look for W such that (SV )W = S; i.e. VW = 1 (impossible since rank of
V ,W would be smaller than N in practical implementations)

but: X = VW ≈ 1 through a Monte Carlo method for choosing V and W
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before studying different choices for the quark source
let’s look at how to compute the propagator given a
source b

the generic problem: solve

Ax = b

for the vector x
this is a minimisation problem:
consider

f (x) =
1
2

xT Ax − bT x + c

the minimum of this function is

f ′(x) = 0 =
1
2
(Ax + xT A) − b

so for positive definite and symmetric A the
minimum of f (x) is what we are looking for
Ax = b
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entertaining reading: An Intro-

duction to the Conjugate Gradient

Method Without the Agonizing Pain

Edition 1 1
4 by Jonathan Richard

Shewchuk

the problem of finding x is equivalent to find the extremum of a quadratic form
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correlation functions in terms of propagatorsX

algorithm for computation of correlators X

choosing a clever quark source
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correlation functions in terms of propagatorsX

algorithm for computation of correlators X
choosing a clever quark source

point source (nothing to say here)
noise source
smeared source
sequential sources
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Noise source

Comp. Phys. Comm. 78 (1994) 256-264

remember: look for W such that (SV )W = S; i.e. VW ≈ 1

the approximation X = VW ≈ 1 is reached through e.g. a set of individually,
identically distributed random numbers {µnl } where n = 1, . . . ,N , l = 1, . . . ,L and
which satisfy

E [µmk (µnl)
∗] = δmnδkl

(note: E [·] is expectation value over a series of experiments)

we construct V as V = 1√
L
[µnl ]

and W ≡ (V ∗)T to construct
X ≡ VW

with elements xmn = 1
L

L∑

l=1
µmlµ∗nl
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which satisfy

E [µmk (µnl)
∗] = δmnδkl

(note: E [·] is expectation value over a series of experiments)

we construct V as V = 1√
L
[µnl ]

and W ≡ (V ∗)T to construct
X ≡ VW

with elements xmn = 1
L

L∑

l=1
µmlµ∗nl

The noise-average has the following properties

E [xmn] = δmn

E [(xmn − δmn)(x ∗pq − δpq)] = 0 if (mn) , (pq)or (mn) , (qp)

E [|xmn − δmn |2] = 1
L if m , n
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Convergence of the noise source propagator

let’s look at the trace of the propagator (we always look at traces of objects
constructed from propagators...)

E [Tr(SX )] =
var [Tr(SX )] =
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let’s look at the trace of the propagator (we always look at traces of objects
constructed from propagators...)

E [Tr(SX )] = Tr(S)
var [Tr(SX )] =
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Convergence of the noise source propagator

let’s look at the trace of the propagator (we always look at traces of objects
constructed from propagators...)

E [Tr(SX )] = Tr(S)

var [Tr(SX )] =
∑

m,n = 1
m , n

{
|smn |2

L + smns∗nmE [x2
nm]
}

+
N∑

n=1
|snn|2E [|xnn − 1|2]

choices for the noise source which minimise the variance:
Z (2)-noise: P[ηnl = 1] = 1

2 and P[ηnl = −1] = 1
2

since var [Tr(SXZ(2))] =
∑

m,n

|smn|2+smnsnm∗
L
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Convergence of the noise source propagator

let’s look at the trace of the propagator (we always look at traces of objects
constructed from propagators...)

E [Tr(SX )] = Tr(S)

var [Tr(SX )] =
∑

m,n = 1
m , n

{
|smn |2

L + smns∗nmE [x2
nm]
}

+
N∑

n=1
|snn|2E [|xnn − 1|2]

choices for the noise source which minimise the variance:
Z (2)-noise: P[ηnl = 1] = 1

2 and P[ηnl = −1] = 1
2

since var [Tr(SXZ(2))] =
∑

m,n

|smn|2+smnsnm∗
L

Z (J)-noise P[µJ
nl = e2πlj/J ] = 1

J

since var [Tr(SXZ(J))] =
∑

m,n

|smn |2
L

difficult to say which one is better - depends on term
∑

m,n
smns∗nm
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Constructing meson correlation functions from noise source
props

2pt function from point source:

C2(~0, t) =
∑

~x

〈

Tr
{

S†1(~x , x0;~0,0)γ5Γ
′S2(~x , x0;~0,0)γ0Γ

†γ0γ5

}〉

QCD
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Constructing meson correlation functions from noise source
props

2pt function from point source:

C2(~0, t) =
∑

~x

〈

Tr
{

S†1(~x , x0;~0,0)γ5Γ
′S2(~x , x0;~0,0)γ0Γ

†γ0γ5

}〉

QCD

2pt-function from noise source (one-end trick Phys. Rev. D59 074503 (1999)):

C2(~0, t) =
∑

~x ,~y

〈

Tr
{

S1(~y , y0;~x , x0)Γ
′S2(~x , x0; ~y , y0)γ0Γ

†γ0

}〉

QCD

≈
∑

~y

1
L

∑

l

〈

Tr

{

Ψ1,l(~y , y0; x0)
(

Ψ
γ5Γ′

2,l (~y , y0; x0)
)†
γ5γ0Γ

†γ0

}〉

QCD

where
Ψ1,l(~y , y0; x0) =

∑

~x
[S1(~y , y0;~x , x0)]aαbβ [ηl(~x , x0)]b,β

︸        ︷︷        ︸

noise source

Ψ
γ5Γ

2,l (~y , y0; x0) =
∑

~x
S2(~y , y0;~x , x0) γ5Γη(~x , x0)

︸       ︷︷       ︸

noise source
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i) Ψl(~y , y0; x0) =
∑

~x
S(~y , y0;~x , x0)ηl(~x , x0)

ii) Ψ
γ5Γ

l (~y , y0; x0) =
∑

~x
S(~y , y0;~x , x0)γ5Γηl(~x , x0)

case Γ = γ5 → Ψ
γ5γ5
1 = Ψ1:

need δκλδc,dδ(~x − ~z) = 1
L

∑

l
ηl(~x)κ,cη†l (~z)λ,d

general case: δc,dδ(~x − ~z) = 1
L

∑

l
ηl(~x)cη†l (~z)d

in this case we need four noise vectors (spin explicit) in order to properly represent
the gamma-structure

remark for implementation: use your old inverter for noise source
most codes expect 3 × 4 inversions. Here only 1 or 4 inversions, respectively, are
necessary. Use standard inverter but skip inversion if norm of the source for a
given spin − color -index vanishes

I have secretly assumed that the noise source is limited to one time slice. This is
called ”dilution”. The noise can be diluted more (spin-explicit, color-explicit) or e.g.
onto the odd and even site on the lattice.
Dilution in time is known to increase the signal/noise in correlation functions
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Costs:
source type # of inversions
point source 12 -
single noise vector: 1 times the number of hits
spin explicit noise vector: 4 times the number of hits

0 4 8 12 16 20 24 28 32 36 40 44 48
N
hits

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38
C
(t
=
1
6
)

Z2PSWall
Z2SEMWall
Point

study on a unit gauge configuration JHEP 0808:086,2008
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Costs:
source type # of inversions
point source 12 -
single noise vector: 1 times the number of hits
spin explicit noise vector: 4 times the number of hits

some experience:

hit-average and gauge-average are often commutative
in practice it may suffice to generate only few noise vectors per configuration
(since the gauge noise is larger than the noise from the stochastic source)
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Costs:
source type # of inversions
point source 12 -
single noise vector: 1 times the number of hits
spin explicit noise vector: 4 times the number of hits

some experience:

hit-average and gauge-average are often commutative
in practice it may suffice to generate only few noise vectors per configuration
(since the gauge noise is larger than the noise from the stochastic source)

when ’hitting’ various times on a gauge configuration - move the source along the
0-direction; this reduces correlation effects originating in the gauge configuration
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Costs:
source type # of inversions
point source 12 -
single noise vector: 1 times the number of hits
spin explicit noise vector: 4 times the number of hits

some experience:

hit-average and gauge-average are often commutative
in practice it may suffice to generate only few noise vectors per configuration
(since the gauge noise is larger than the noise from the stochastic source)

when ’hitting’ various times on a gauge configuration - move the source along the
0-direction; this reduces correlation effects originating in the gauge configuration

how well the noise source works compared to the point source seems to be a
function of the volume, the quark masses and the observable under investigation.
example (JHEP 0807:112,2008):

163 × 32 × 16 DWF, a−1 ≈ 1.7GeV,
mπ ≈ 700MeV
noise source achieves same stat. er-
ror on mπ at half of the price

243 × 64 × 16 DWF, a−1 ≈ 1.7GeV,
mπ ≈ 330MeV
noise source achieves same stat. er-
ror on mπ at 1/12th of the price
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Yet another source type: Gaussian smearing
Güsken et al.; NPB (Proc. Suppl.) 17 (1990) 361-364

motivation: phenomenologically immitate what may or may not be the hadron
wave function

thus increase overlap with desired hadronic state

similar to point source, but smearing out the delta function

this corresponds to smear out the fermion fields

ψ̃(~x , t) =
∑

x ′
F (~x , ~x ′)ψ(~x ′, t)

Gaussian smearing:

F (x , x ′) = δx ,x ′ + αH(x , x ′)

with the hopping matrix

H(x , x ′) =

3∑

µ=1

{

Uµ(x)δx ′ ,~x+µ̂ + U†µ(x − µ̂)δx ′ ,x−µ̂
}

with coupling α between nearest neighbours

iterate this starting from a point source

in the free case approximately gaussian shape and rotationally invariant
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Still not enough sources: sequential source propagators

how to construct 3pt-functions?

Vµ(~y , y0)

(~x , x0) (~0,0)

problem here: naively one would need an all-to-all propagator

way out: sequential source propagator Nucl. Phys. B316 (1989) 355

S̃13(~y , y0;~p, x0;~0,0) =
∑

~x

S3(~y , y0;~x , x0)γ5Γ
′γ5S1(~x , x0, ~0,0)ei~p~x

︸                         ︷︷                         ︸

source
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Still not enough sources: sequential source propagators

S̃13(~y , y0;~pf , x0;~0,0) =
∑

~x

S3(~y , y0;~x , x0)γ5Γ
′γ5S1(~x , x0, ~0,0)ei~pf~x

︸                          ︷︷                          ︸

source

can be solved by
∑

z

D(~z , z0;~z′, z′0)S̃(~z′, z′0, ~0,0) =
∑

~y ,y0

ei~pf ~yδz ,yγ5Γ
†γ5S(y , 0)

with the source term

∑

~y ,y0

ei~pf ~yδz ,yγ5Γ
†γ5S(y , 0) =

{

0 z4 , sink time slice
γ5Γ

†γ5G(~z , z0, ~0,0)ei~p~z z4 = sink time slice

new inversions for each Γ and Fourier mode ei~p~x

straight forward to implement with noise source

once S̃ has been constructed the three point function can be contracted like a
two-point function
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Comments on 3pt functions

C3 =
∑

~xf ,~x
ei~pf ·(~xf−~x)ei~pi ·~x 〈Of (tf , ~xf ) jΓj (t , ~x) O†i (ti ,

~0) 〉

=
∑

~x ,~y
ei~pf (~x−~y)ei~pi~y 〈Tr

{

S1(~0,0;~x , x0)Γ
′S3(~x , x0; ~y , y0)ΓjS2(~y , y0;~0,0)γ0Γ

†γ0)
}

〉

=
∑

~x ,~y
e−i~(pf−pi )~y 〈Tr

{(

S̃31(~y , y0;~pi , x0;~0,0)
)†
γ5ΓjS2(~y , y0;~0,0)γ0Γ

†γ0γ5)
}

〉

chroma does not use the γ0 - so there might be sign issues

Some ingredients for computing correlation functions Andreas Jüttner @ LAP08, DESY Zeuthen 20/30



Comments on 3pt functions

C3 =
∑

~xf ,~x
ei~pf ·(~xf−~x)ei~pi ·~x 〈Of (tf , ~xf ) jΓj (t , ~x) O†i (ti ,

~0) 〉

=
∑

~x ,~y
ei~pf (~x−~y)ei~pi~y 〈Tr

{

S1(~0,0;~x , x0)Γ
′S3(~x , x0; ~y , y0)ΓjS2(~y , y0;~0,0)γ0Γ

†γ0)
}

〉

=
∑

~x ,~y
e−i~(pf−pi )~y 〈Tr

{(

S̃31(~y , y0;~pi , x0;~0,0)
)†
γ5ΓjS2(~y , y0;~0,0)γ0Γ

†γ0γ5)
}

〉

chroma does not use the γ0 - so there might be sign issues
we extract ME of type 〈Pf (~pf ) |V4(0) |Pi(~pi) 〉
It turns out to be advantageous to extract them from ratios like e.g.

R1,Pi Pf
(~pi , ~pf ) = 4

√
EiEf

√

CPi Pf
(t ,~pi ,~pf ) CPf Pi

(t ,~pf ,~pi )

CPi
(T/2,~pi ) CPf

(T/2,~pf )
,

R2,Pi Pf
(~pi , ~pf ) = 2

√
EiEf

√

CPi Pf
(t ,~pi ,~pf ) CPf Pi

(t ,~pf ,~pi )

CPi Pi
(t ,~pi ,~pi ) CPf Pf

(t ,~pf ,~pf )
,

R3,Pi Pf
(~pi , ~pf ) = 4

√
EiEf

CPi Pf
(t ,~pi ,~pf )

CPf
(T/2,~pf )

√

CPi
(T/2−t ,~pi ) CPf

(t ,~pf ) CPf
(T/2,~pf )

CPf
(T/2−t ,~pf ) CPi

(t ,~pi ) CPi
(T/2,~pi )

.

(1)

sometimes cancellation of renormalisation factor
plateaus look different - optimise!
cancellation of correlations→ better signal
time-dependence cancels - these ratios should be constant for large euclidean
separations
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Twisted boundary conditions

periodic bc’s

ψ(xi + L) = ψ(xi)

~pquark = ~n 2π
L

Eπ =
√

m2
π + (~n 2π

L )2

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(~pL)2

(a
E
π
)2

PLB 595 (2004) 408, PLB 593 (2004) 82,

PLB 609 (2005) 73, PLB 632 (2006) 313
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Twisted boundary conditions

periodic bc’s twisted bc’s

ψ(xi + L) = ψ(xi) ψ(xi + L) = eiθiψ(xi)

~pquark = ~n 2π
L

~pquark = ~n 2π
L +

~θ
L

Eπ =
√

m2
π + (~n 2π

L )2 Eπ =

√

m2
π + (~n 2π

L +
~θu−~θd

L )2
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Twisted boundary conditions - applications

pion form factor 〈π(p′)|V elmag
µ |π(p)〉

0 0.05 0.1 0.15 0.2 0.25 0.3

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Q2/GeV2

fπ
π
(Q

2
)
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Twisted boundary conditions - applications

pion form factor 〈π(p′)|V elmag
µ |π(p)〉

0 0.05 0.1 0.15 0.2 0.25 0.3
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0.7
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0.8
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set B
set C
pole fit

Q2/GeV2

fπ
π
(Q

2
)

JHEP 0807:112,2008
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Implementation of partially twisted BC

twisted bc’s ψ(x) = ei
~θ·~x
L ψ̃(x)

Wilson’s hopping term:

ψ̃(x)
[

ei
aθi
L Ui(x)(1 − γi)ψ̃(x + î) + e−i

aθi
L U†i (x − î)(1 + γi)ψ̃(x − î)

]
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Implementation of partially twisted BC

twisted bc’s ψ(x) = ei
~θ·~x
L ψ̃(x)

Wilson’s hopping term:

ψ̃(x)
[

ei
aθi
L Ui(x)(1 − γi)ψ̃(x + î) + e−i

aθi
L U†i (x − î)(1 + γi)ψ̃(x − î)

]

equivalent: replace the link variables

{Ui(x)} → {ei
aθi
L Ui(x)}

inverting on phase-shifted gauge field encodes the momentum shift for the
valence quarks

Applicable to other discretizations (e.g. DWF)
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Kinematics with twisted bc’s

2pt-function

Eπ =

√

m2
π + (~n 2π

L +
~θu−~θd

L )2

3pt-function

q2 = (pi − pf )
2 =
{

[Ei(~pi) − Ef (~pf )]
2 −
[

(~pFT,i + ~θi/L) − (~pFT,f + ~θf /L)
]2
}

watch out for relative signs of twist angles when you construct the 3pt function
changing directions of twists can decrease correlation effects
keep track of direction of twist - correlators involving currents in spacial directions
depend on the momentum
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Some newer developments for computing propagators

light quark physics is dominated by the low lying eigen modes of the Dirac operator

noise from noise source propagators often still too large

idea: separate treatment of low modes and high modes
let Q = γ5D be the herm. dirac operator

Q = Q1 + Q2 =

Nev∑

i=1

λiv (i)v (i)†

︸          ︷︷          ︸

exact or other inexact treatment

+

N∑

i=Nev+1

λi v (i)v (i) †

︸               ︷︷               ︸

treat as a correction by noisey estimator

exact treatment of the lowmodes: Comp. Phys Comm. 172 (2005) 145162

inexact treatment of the lowmodes: JHEP07 (2007) 081

the orthogonal complement can be corrected for by noise source techniques
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The Dublin approach

Comp. Phys Comm. 172 (2005) 145162

also two pieces for the quark propagator Q−1 = Q̃0 + Q̃1:
Q̃0 is low mode part and Q̃1 = Q−1P1

P1 = 1 − P0 = 1 −
Nev∑

j=1

v (j)v j †

correct for Q̃1 via Nd × L diluted noise vectors
{(

η(1)

1 , ..., η(1)

L

)

, . . . ,
(

η
(Nd )

1 , ..., η
(Nd )

L

)}

(due to diluation the noise vectors are mutually orthogonal before taking the noise
average)

the hybrid estimate for the all-to-all prop (for a single noise vector then is
Nev+Nd∑

i=1
u(i)(~x , x0)w (i)(~y , y0)

†γ5 where

w (i) =
{

v(1)

λ1
, . . . , v(Nev )

iλNev
, η(1), . . . , η(Nd )

}

and

u(i) =
{

v (1), . . . , v (Nev ), ψ(1), . . . , ψ(Nd )
}

construct observables from these vectors

we don’t know the optimal number of low modes (they are expensive to construct)

again volume, quark mass and the observable under consideration do play a role

Some ingredients for computing correlation functions Andreas Jüttner @ LAP08, DESY Zeuthen 26/30



Approximate quark modes by constant modes
JHEP07 (2007) 081

Lüscher splits the lattice of spatial extent L into b sub lattices (domain
decomposition)
on each sub-lattice there are 12 constant modes
approximation of a global plane wave is already well described by this with small
”deficit”
works if fields are smooth on scale of block size b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x /L

b
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Application to QCD

free field far away from QCD

helpful observation - local coherence:
”... a set of quark fields is referred to as locally coherent if the fields are locally well
approximated by a relatively small numer of fields ...”

this is in fact the case in lattice QCD - numerical test
compute eigenmodes of DD† and a domain decomposed subset of these low
modes

test on 64 × 323-lattice devided into 44-blocks and 12 out of 48 computed
eigenmodes selected to construct the domain decomposed sub spaces

result: the remaining 36 low modes are indeed ”coherent” with very small deficits

open questions:
economic/optimised way to construct deflation modes
Lüscher uses relaxation by repeatedly applying the propagator to a random field -
can one do better?

can the low modes be applied effectively to the construction of correlation
functions like in the Dublin approach?
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i n4n3n2n1 Γi equivalent sink insertion 3pt

0 0000 1 1 a0-a0
1 0001 γ1 γ1 a0-rho x 1
2 0010 γ2 γ2 a0-rho y 1
3 0011 γ1γ2 γ1γ2 a0-b1 z 1
4 0100 γ3 γ3 a0-rho z
5 0101 γ1γ3 γ1γ3 a0-b1 y 1
6 0110 γ2γ3 γ2γ3 a0-b1 x 1
7 0111 γ1γ2γ3 γ5γ4 a0-pion 2
8 1000 γ4 γ4 a0-a0 2
9 1001 γ1γ4 γ1γ4 a0-rho x 2

10 1010 γ2γ4 γ2γ4 a0-rho y 2
11 1011 γ1γ2γ4 γ3γ5 a0-a1 z 1
12 1100 γ3γ4 γ3γ4 a0-rho z 2
13 1101 γ1γ3γ4 γ5γ2 a0-a1 y 1
14 1110 γ2γ3γ4 γ1γ5 a0-a1 x 1
15 1111 γ5 γ5 a0-pion
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