Computing correlation functions for lattice QCD using CHROMA

Andreas Jüttner

Lattice practices 2008, DESY Zeuthen 08-10.10.2008

CHROMA is huge and there is no such thing as a comprehensive documentation

Chroma Progamming Tnterface for Lattice QCD

A cast of tens

October 2, 2008

1 Introduction

Someday, a manual of sorts will go here...

- there are some notes in the doc/notes-directory
- if you want to find out how things work either
- browse DOXYGEN

(an up-to-date version can be found on the USLQCD web-page

http://usqcd.jlab.org/usqcd-docs/chroma/)

- or browse the directory tests/ for example xml-input
- or use Huey-Wen Lin's compilation of notes
 http://www.jlab.org/~hwlin/Chroma_notes/chroma_note.html
- or go through one of Balint Joo's many tutorials

(e.g. http://www.jlab.org/~dgr/HackLatt07/Chroma_measurement.htm)

A basic measurement:

- read the gauge configuration
- make all kind of quark sources
- invert the on the sources to compute a quark propagator
- potentially save the propagator for later use
- sink-smear the propagator
- perform desired contractions on the quark propagators
- write results to disk

Plan:

- I will now discuss the basic xml-inupt to compute some of the observables which were discussed in the previous part
- the examples have partly been taken from the chroma/tests/chroma-tree
- the screen-shots have been taken from the firefox-xml-browser

Basic structure of the XML-input to CHROMA

- <chroma>

<annotation> Hadron spectrum input </annotation> format for comments to chroma in input </annotation> format for comments to chroma in

+ <Param></Param> + <RNG></RNG> + <Cfg></Cfg>

</chroma>

Blocks specifying measurement parameters, the random number generator and the configurations on which the measuremts will be carried out

It is not a bad idea to use Firefox or similar to browse XML-files since it lets you expand and collapse the XML-tree – CHROMA-XML input can become quite complicated

Basic structure of the XML-input to CHROMA

<annotation> Hadron spectrum input </annotation> - <Param> – <InlineMeasurements> + <elem></elem> </InlineMeasurements> <nrow>4 4 4 8</nrow> </Param> + <RNG></RNG> + <Cfq></Cfq> </chroma>

- <chroma>

<InlineMeasurements> contains

- MAKE SOURCE
- PROPAGATOR
- ERASE NAMED OBJECT (source)
- QIO WRITE NAMED OBJECT (save propagator)
- SINK SMEAR

•

- ERASE NAMED OBJECT (prop without sink smearing)
- HADRON SPECTRUM

specifies the lattice geometry default: (x,y,z,t) (actually j decay sets the timedirection

- there are mandatory blocks (sink_smearing) which have to be there leave them as trivial (point sink) if not desired – otherwise: crash
- CHROMA allows to deallocate memory space by erasing the "NAMED OBJECT"
- I will now go through the <InlineMeasurement> blocks

Make a source – point source

- <elem> <Name>MAKE SOURCE</Name> <Frequency>1</Frequency> - <Param> <version>6</version> - <Source> <version>2</version> <SourceType>POINT SOURCE</SourceType> <j decay>3</j decay> <t srce>0 0 0 0 0 </t srce> - < Displacement> <version>1</version> <DisplacementType>NONE</DisplacementType> </Displacement> </Source> </Param> - <NamedObject> <gauge id>default gauge field</gauge id> <source id>pt source 0</source id> </NamedObject> - <File> <file name>./pt source 0</file name> <file volfmt>MULTIFILE</file volfmt> </File> </elem>

Speciy source type here: e.g. POINT_SOURCE WALL_SOURCE SHELL_SOURCE BNDST_SOURCE RAND_Z2_WALL_SOURCE RAND_U1_WALL_SOURCE the structure of the remainder of <Parameter> depends on the source type

decay direction and source time-slice

The source needs a name to refer to it at a later stage. In Chroma this is done via <NamedObject>

In some cases (e.g. light quark propagator) it makes sense to write the source to disk for later usage

Make a source – noise source

```
- <elem>
                                                                  Z(4) is \frac{1}{\sqrt{2}}(\pm 1 \pm i1)
 - <annotation>
    Diluted complex Z(2) = Z(4) random source. Even sites
   </annotation>
   <Name>MAKE SOURCE FERM</Name>
   <Frequency>1</Frequency>
 - <Param>
     <version>6</version>
   - <Source>
      <SourceType>RAND DILUTE ZN SOURCE</SourceType>
      <version>1</version>
      <N>4</N>
      <i decay>3</i decay>
      <t source>0</t source>
     - <ran seed>
       - <Seed>
          <elem>201</elem>
          <elem>213</elem>
                                seeds for RNG
          <elem>215</elem>
          <elem>217</elem>
        </Seed>
      </ran seed>
      <spatial mask size>2 2 2</spatial mask size>
     - <spatial mask>
                                                  very complicated way of diluting in the volume
        <elem>0 0 0</elem>
                                                   (I think this one gives you the even sites)
        <elem>1 1 0</elem>
        <elem>1 0 1</elem>
        <elem>0 1 1</elem>
      </spatial mask>
      <color mask>0 1 2</color mask>
                                                color and spin dilution – no dilution in this example
      <spin mask>0123</spin mask>
     </Source>
   </Param>
 - <NamedObject>
     <gauge id>default gauge field</gauge id>
     <source id>zN source</source id>
   </NamedObject>
 </elem>
```

Make a source – Gauss smeared

- <elem>

- <Name>MAKE_SOURCE</Name>
- <Frequency>1</Frequency>
- <Param>
 - <version>6</version>
 - <Source>
 - <version>2</version>
 - <SourceType>SHELL_SOURCE</SourceType>
 - <j_decay>3</j_decay>
 - <t_srce>0 0 0 0 0</t_srce>
 - <SmearingParam>
 - <wvf_kind>GAUGE_INV_GAUSSIAN</wvf_kind>
 - <wvf_param>2.0</wvf_param>
 - <wvfIntPar>5</wvfIntPar>
 - <no_smear_dir>3</no_smear_dir>
 - </SmearingParam>
 - </Source>

</Param>

- <NamedObject>

```
<gauge_id>default_gauge_field</gauge_id>
```

```
<source_id>sh_source_1</source_id>
```

</NamedObject>

</elem>

Generic name for wave function smearing

Wave function can be either of: GAUSSIAN EXPONENTIAL GAUGE_INV_GAUSSIAN WUPPERTAL JACOBI

this corresponds to α and the number of iterations as discussed in the prev. lecture and also: 'Don't smear in the time direction' (which is 3 in chroma)

Make a propagator – from a point source

- <elem> <Name>PROPAGATOR</Name> <Frequency>1</Frequency> - <Param> <version>10</version> <quarkSpinType>FULL</quarkSpinType> <obsvP>false</obsvP> <numRetries>1</numRetries> - < FermionAction> <FermAct>CLOVER</FermAct> <Kappa>0.115</Kappa> <clovCoeff>1.17</clovCoeff> - < AnisoParam> <anisoP>false</anisoP> </AnisoParam> - <FermionBC> <FermBC>SIMPLE FERMBC</FermBC> <boundary>111-1</boundary> </FermionBC> </FermionAction> - <InvertParam> <invType>CG INVERTER</invType> <RsdCG>1.0e-8</RsdCG> <MaxCG>1000</MaxCG> </InvertParam> </Param> - <NamedObject> <gauge id>default gauge field</gauge id> <source id>sh source 1</source id> -<prop id>sh prop 0</prop id> </NamedObject> </elem>

hopping parameter, clover coefficient and anisotropy if desired

Inverter residual and maximum iteration count

Specify here on which source to invert

Sink smear the propagator

- <elem>

<Name>SINK_SMEAR</Name>

<Frequency>1</Frequency>

- <Param>

<version>5</version>

-<Sink>

<version>2</version>

<SinkType>POINT_SINK</SinkType>

<j_decay>3</j_decay>

</Sink>

</Param>

```
- <NamedObject>
```

<gauge_id>default_gauge_field</gauge_id>

```
<prop_id>sh_prop_0</prop_id>
```

<smeared prop id>sh_pt_sink_1</smeared prop id>

</NamedObject>

</elem>

Not much to say here – this applies the same smearing as for the source to the sink of a given propagator. In this example we stick to a simple point at the sink.

Creating 2pt-meson correlators

<elem> <annotation> Compute the hadron spectrum. <!--<br--><name>HADRON_SPECTRUM</name> <frequency>1</frequency></annotation></elem>	annotation>	
<pre>- <param/> <version>1</version> <mesonp>true</mesonp> <currentp>true</currentp> <baryonp>true</baryonp> <time_rev>false</time_rev> <mom2_max>3</mom2_max> <avg_equiv_mom>true</avg_equiv_mom></pre>	MesonP: CurrentP: BaryonP: time_rev: avg_equiv_mor	diagonal meson correlators currents needed for O(a)- improvement baryon 2pt functions use time-reversion symmetry n: avg. over momentum channels
 <namedobject></namedobject> <gauge_id>default_gauge_field</gauge_id> <sink_pairs></sink_pairs> 	set ma	ximum \vec{p}^2 to be induced
<pre>- <elem> <first_id>sh_pt_sink_1</first_id> <second_id>sh_pt_sink_1</second_id> </elem></pre>	Here you can propagator pa the correlator	specify a whole series of airs on which to evaluate s
<xml_file>hadspec.dat.xml</xml_file> 		

Make a source – sequential source

- <elem> <annotation> a0-a0 seqsource </annotation> <Name>SEQSOURCE</Name> <Frequency>1</Frequency> - <Param> <version>2</version> - <SeqSource> <version>1</version> <SeqSourceType>a0-a0</SeqSourceType> <i decay>3</i decay> <t sink>6</t sink> <sink mom>1 0 0</sink mom> </SeaSource> </Param> - <PropSink> <version>5</version> - <Sink> <version>2</version> <SinkType>SHELL SINK</SinkType> <i decay>3</i decay> - <SmearingParam> <wvf kind>GAUGE INV GAUSSIAN</wvf kind> <wvf param>2.0</wvf param> <wvfintPar>5</wvfintPar> <no smear dir>3</no smear dir> </SmearingParam> - < Displacement> <version>1</version> <DisplacementType>NONE</DisplacementType> </Displacement> - <LinkSmearing> <LinkSmearingType>APE SMEAR</LinkSmearingType> k smear fact>2.5</link smear fact> k smear num>0</link smear num> <no smear dir>3</no smear dir> </LinkSmearing> </Sink> </PropSink> + <NamedObject></NamedObject> </elem>

will be expalined in a minute

specification of sequential source (timedirection is 3, the sink of the first prop is on time-slice 6 and the induced momentum is $\vec{p} = \frac{2\pi}{L}(1,0,0)$

> In this example the sink of the initial propagator will be smeared with the iterated laplacian discussed in the previous lecture and the gauge links have been APE-smeared

a word on γ matrices in CHROMA

Each of the 16 γ -matrices can be represented as a product $\gamma_1^{n_1} \gamma_2^{n_2} \gamma_3^{n_3} \gamma_4^{n_4}$ The indices n_i are used to represent the numbers 0-15 by 4-bit numbers The following table gives the gamma matrices corresponding to the integers 0-16 in chroma:

i	<i>n</i> ₄ <i>n</i> ₃ <i>n</i> ₂ <i>n</i> ₁	Γ _i	equivalent (sir	nk insertion 3	XML-tag <seqsourcetype></seqsourcetype>
0 1 2 3 4 5 6 7	0000 0001 0010 0011 0100 0101 0110 0111	I γ1 γ2 γ1 γ2 γ3 γ1 γ3 γ2 γ3 γ1 γ2	I γ1 γ2 γ1γ2 γ3 γ1γ3 γ2γ3 γ5γ4		a0-a0 a0-rho x 1 a0-rho y 1 a0-b1 z 1 a0-rho z a0-b1 y 1 a0-b1 x 1 a0-pion 2	is one of these, so the insertion at the sink corresponds to these gamma matrices, left- and right-multiplied by gamma_5
8 9 10 11 12 13 14 15	1000 1001 1010 1011 1100 1101 1110 1111	γ4 γ1γ4 γ2γ4 γ1γ2γ4 γ3γ4 γ3γ4 γ1γ3γ4 γ2γ3γ4 γ5	γ4 γ1,74 γ2,74 γ3,75 γ3,74 γ5,72 γ1,75 γ5		a0-a0 2 a0-rho x 2 a0-rho y 2 a0-a1 z 1 a0-rho z 2 a0-a1 y 1 a0-a1 x 1 a0-pion	

Creating 3pt-meson correlators

- <elem>

<annotation> BuildingBlock input file. </annotation>

- <Name>BUILDING_BLOCKS</Name>
- <Frequency>1</Frequency>
- <Param>
 - <version>5</version>
 - <use_sink_offset>true</use_sink_offset>
 - <mom2_max>3</mom2_max>
 - <links_max>1</links_max>
 - <canonical>false</canonical>
 - <time_reverse>false</time_reverse>
 - <translate>false</translate>
 - <FermState>
 - <Name>SIMPLE_FERM_STATE</Name>
 - <FermionBC>
 - <FermBC>SIMPLE_FERMBC</FermBC>
 - <boundary>1 1 1 -1</boundary>
 - </FermionBC>
 - </FermState>
- </Param>
- <BuildingBlocks>
 - <OutFileName>./examplebb_v1.out</OutFileName>
 - <GaugeId>default_gauge_field</GaugeId>
 - <FrwdPropId>sh_prop_1</FrwdPropId>
 - <BkwdProps>
 - <elem>
 - <BkwdPropId>sh_a0-a0_seqsource_prop_0</BkwdPropId>
 - <BkwdPropG5Format>G5_B_G5</BkwdPropG5Format>
 - GammaInsertion>0</GammaInsertion>
 - <Flavor>U</Flavor>
 - <BBFileNamePattern>a0-a0_qz%c%1d_qy%c%1d_qx%c%1d.bb</BBFileNamePattern></elem>
 - </BkwdProps>
- </BuildingBlocks>
- <xml_file>bb.dat.xml</xml_file>
- </elem>

Interesting bit here – how contraction is being carried out and which γ to insert at the external current insertion

3pts are computed in "Building_Blocks"

The last bit

-<Seed>

<elem>11</elem>

- <elem>11</elem>
- <elem>11</elem>

<elem>0</elem>

</Seed>

</RNG>

```
- <Cfg>
```

```
<cfg_type>UNIT</cfg_type>
```

<cfg_file>test_purgaug.cfg1</cfg_file> </Cfg>

Seed for the random number generator

Specify the gauge configuration to be used here or use

- UNIT (free theory)
- WEAK_FIELD (close to free field, small fluct.)
- DISORDERED (random/hot)

Now it's your turn

 go to this http://www.hep.phys.soton.ac.uk/~juettner/lap08/index_v1.html URL and follow the steps explained here to study noise sources

If you can't get enough of CHROMA then: build on what you have learned yesterday in Carsten's first tutorial – 6.xml (http://people.physik.hu-berlin.de/~urbach/lap08/6.xml)

- continue where you stopped with Carsten's tutorial yesterday
- get yourself aquainted with the tests, in particular those in tests/chroma/hadron
- exercise amend Carsten's input-XML (6.xml) starting from the example files in the chroma-tree:
 - create a sequential source from two sh_prop_1 propagators in order to compute the electromagnetic pion form factor
 - now generate a new quark sh_prop_th_1 which is the same as sh_prop_th_1 but with twisted boundary conditions (twist angle 0.5 into the x-direction)
 - contract the propagators to build a 3pt function using "building blocks"
 - run the program and start browsing the XML-output for the meson propagators and try to make sense of the produced data