HVStrip1 Testbeam

K. Kanisauskas, J. J. John, J. Dopke, T. Huffman, M. Stanitzki, M. Warren, R. Bates, D. Maneuski, A. Blue

October 28, 2014

- Introduction
- 2 HVStrip1
- 3 Testbeam
- 4 Results
- 5 Irradiation with Fe-55

Aims

- Investigate characteristics of HVStrip1 prior the testbeam
- Gain experience for the future testbeams which would involve HVStrip1
- Obtain response data of the pixel matrix during X-ray illumination

- Introduction
- 2 HVStrip1
- 3 Testbeam
- 4 Results
- Irradiation with Fe-55

The HVStrip1 Chip (1)

- HVStrip1 is the CMOS testchip (HVCMOS process)
- Among several test devices also contains strip-like active pixel matrix consisting of 44 pixels
- Pixels divided into 2 rows and 22 columns with each pixel having dimensions of 40μm × 400μm

The HVStrip1 Chip (2)

- Mounted on daughterboard and subsequently on motherboard
- The arrangement is programmed and controlled via Atlys FPGA board
- First power up less than a week before the testbeam

Initial tests (1)

- Firstly response was tested of the digital readout block (digital injection)
- Later HVStrip1 was configured for analogue injection
- Output pulses were observed of charge sensitive amplifier part of the pixel circuit (OutAB)

Initial tests (2)

- Output pulse heights were mapped for all pixels of 3 HVStrip1 chips
- 1V injection pulses were used for $\approx 0.5 fF$ input capacitance (equivalent to $\approx 3100e^-$)
- Amplitude drop was observed for all chips after column 7 (due to different types of feedback transistors used for pixels)

- Introduction
- 2 HVStrip1
- Testbeam
- 4 Results
- Irradiation with Fe-55

Overview

- Testbeam took place at Diamond Light Source
- Beam of 15keV X-rays of few μm width (when microfocused) was used
- Correspond to $\approx 4100e^-$
- 2 attempts were made to test the chip

Experimental Setup (1)

Experimental Setup (2)

DAQ

- Proper DAQ system was not available during the testbeam
- One pixel at the time could be set for analogue output
- Oscilloscope was used via remote access to record data

Progress

- During first attempt the beam position could not be identified
- Fortunately second attempt was successful and data was acquired
- The beam position was identified when the microfocus was off (thus illuminating larger area)

- Introduction
- 2 HVStrip1
- 3 Testbeam
- Results
- 5 Irradiation with Fe-55

Results (1)

- When the beam position was identified, it was then positioned approximately at the centre of pixel matrix
- Microfocus was turned on and 3mm of Al was placed to reduce intensity
- Scan was performed across all pixel matrix, and thus locating microfocused beam

Results (2)

- Scan was performed on one pixel in both dimensions
- Data consists of position of the chip and number of hits above 100mV threshold in 1ms
- Consistent with dimensions of the pixel given in documentation

Results (3)

- Another scan performed was across all pixel centres
- Response amplitude was sampled to produce a histogram
- The 15keV feature was identified in most pixels and similarly to charge injection tests the response map was produced
- Response pulse heights vary from 91mV to 170mV

Results (4)

- Introduction
- 2 HVStrip1
- 3 Testbeam
- 4 Results
- 5 Irradiation with Fe-55

Fe-55

- After the testbeam the chip was irradiated with Fe-55 X-ray source
- The characteristic line corresponds to 5.9 keV (correspond to $\approx 1600e^-$)
- Scan was done across half of the pixel matrix
- Results vary from 33 mV to 70 mV and seem to be consistent with those from the testbeam

Result comparison

Thank you for your attention!