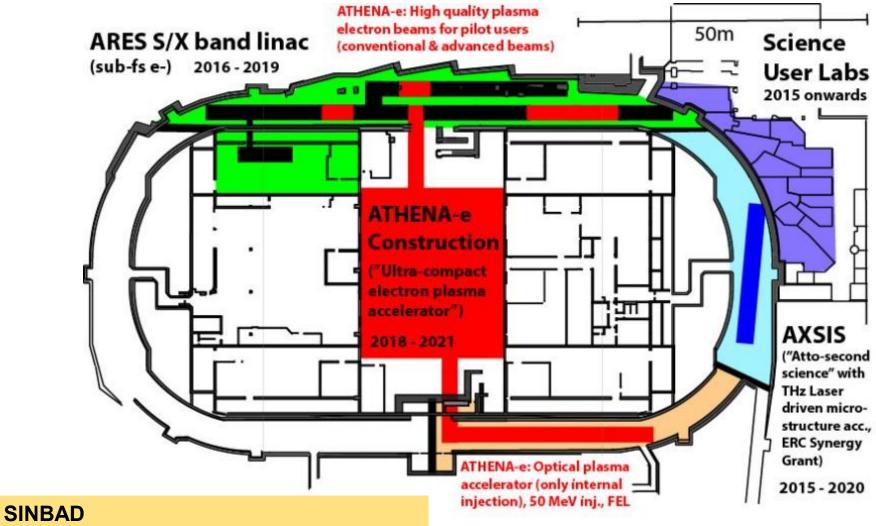
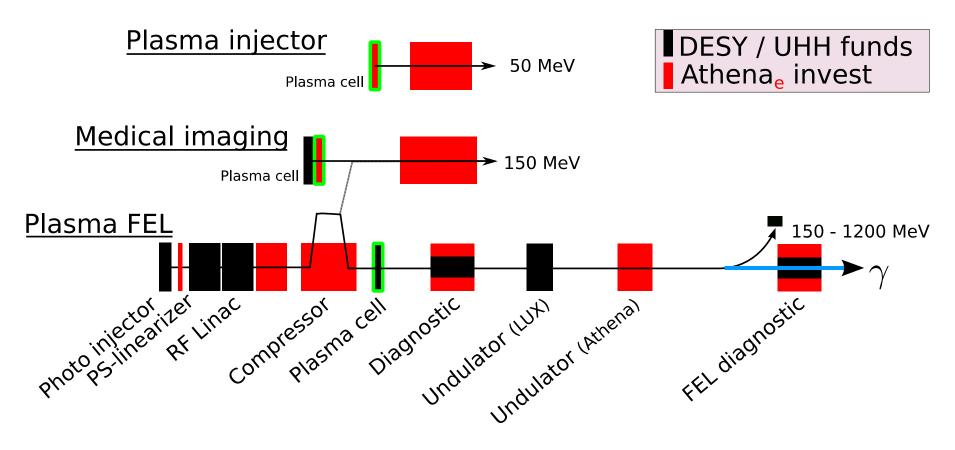

ATHENA_e infrastructure



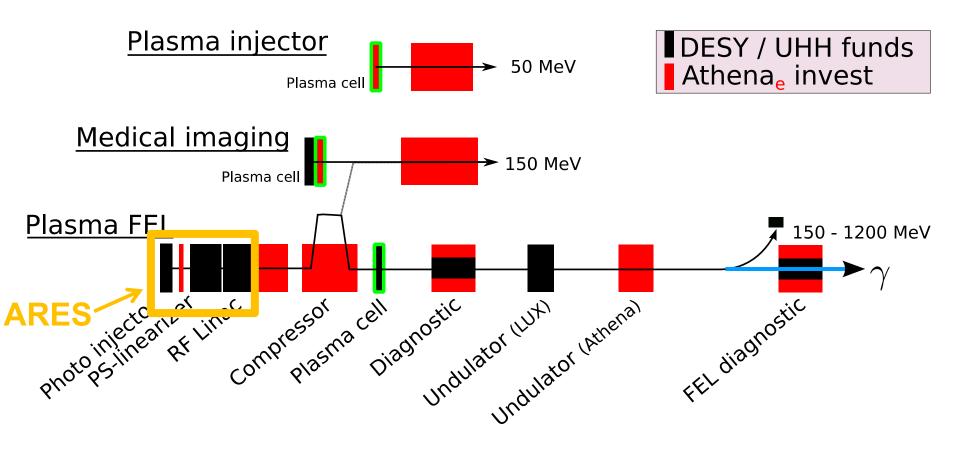
B. Marchetti <u>DESY</u> <u>for the ATHENA team</u>

Helmholtz Institute Jena

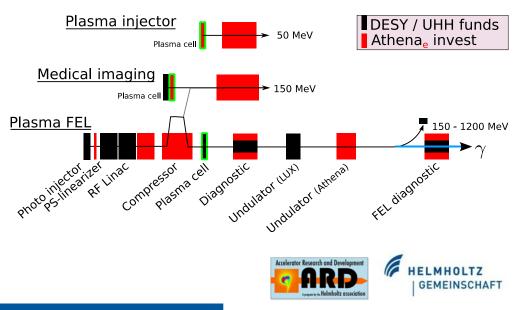
SINBAD as host to ATHENA_e


Short INovative Bunches and Accelerators at Desy PL: Ulrich Dorda

SEITE 2

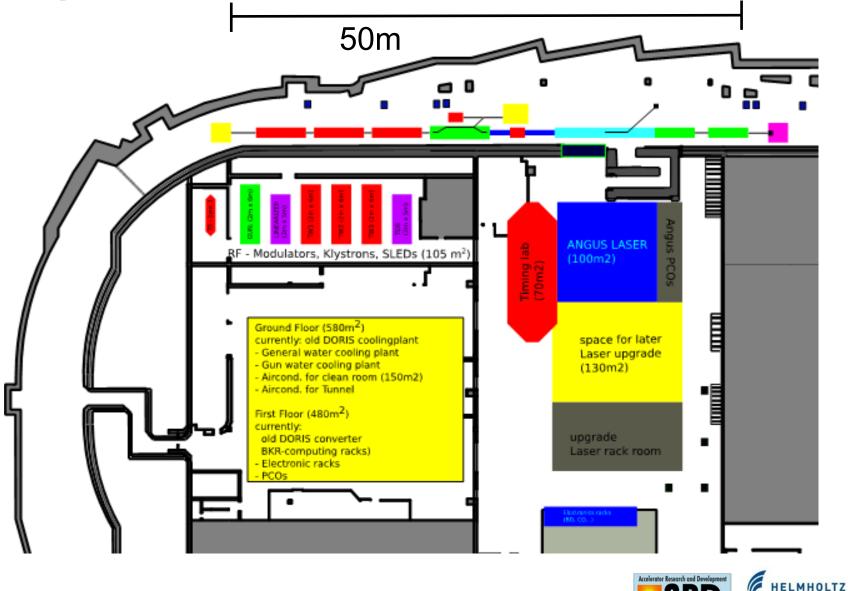

ATHENA_e hosted at DESY

Direct **comparison** of performances of **conventional acceleration vs PWFA** (internal + external injection), both driven by lasers (baseline) and e-beams


ATHENA_e hosted at DESY

Direct **comparison** of performances of **conventional acceleration vs PWFA** (internal + external injection), both driven by lasers (baseline) and e-beams

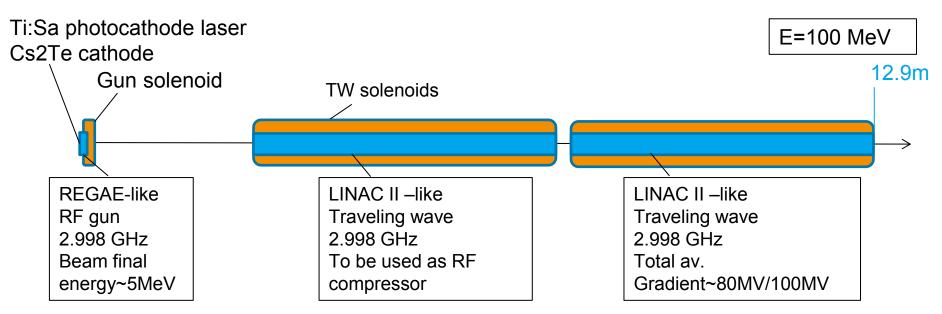
- Bunch compressor/ dogleg
- Energy upgrade of linac
- X-band for Transverse Deflecting Structure (TDS) and Phase Space (PS) linearization
- Timing synchronization upgrade
- Additional undulators
- Imaging beam line



ARES

ACCELERATOR RESEARCH EXPERIMENT AT SINBAD

Required Infrastructure

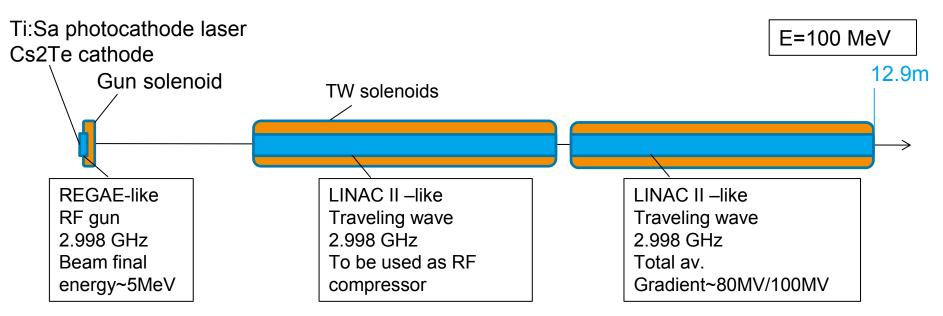

GEMEINSCHAFT

ARES linac

- Initial stand-alone goal: acceleration of ultra-short bunches in a conventional compact linac.
 - Reaching the sub-fs domain (FWHM bunch length ≤ 1 fs)
 - E-bunch energy **100** MeV (later upgrade to 200 MeV)
 - Nominal Charge for ultra-short bunches with RF compression: 0.2-20 pC
 - Maximal Charge that can be extracted from the cathode: 1nC
 - Energy spread: 0.1 0.4 %
 - Transverse emittance < 0.5 mm mrad</p>
- Second stage: ARES in the context of ATHENA
 - External injection into plasma cell + FEL
 - Arrival time jitter (RMS) ≤ 10 fs
 - Transverse position jitter ≤ few µm
 - Imaging set-up (Thomson scattering)

ARES linac baseline layout

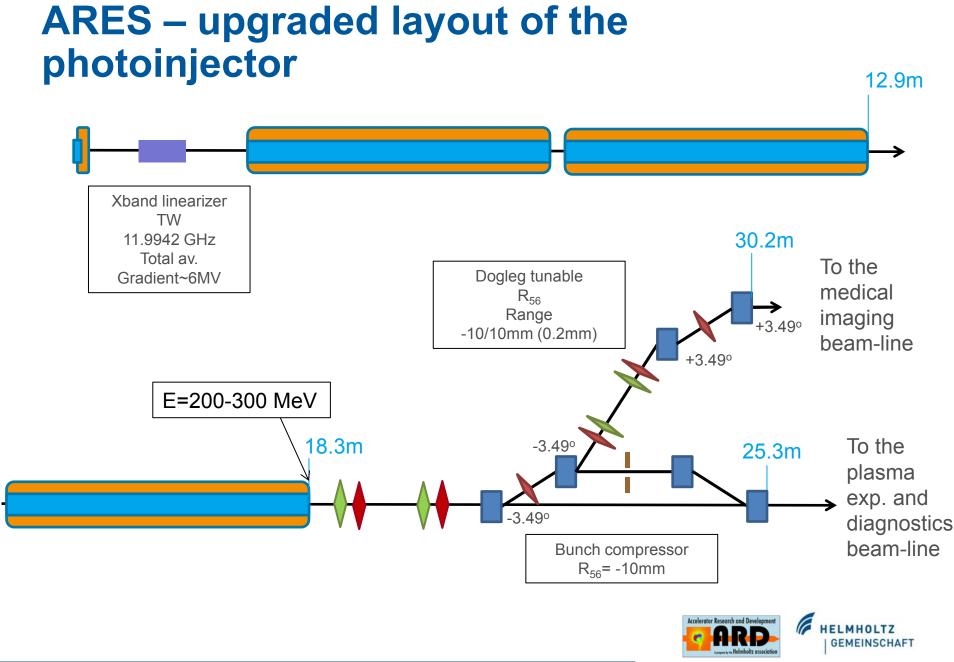
Q=0.5 pC, Ne=3.12*10^6


Beam at the exit of the linac for 3 different working points

FWHM _z [fs]	Q % in 1 FWHM	E [MeV]	ΔΕ/Ε	σ _{x,y} [mm]	nɛ _{x,y} [mm*mrad]	(α _{x,γ} ,β _{x,y} [m])	(I _p local, I _p 1FWHM)[A]
2.1	50.6	110	0.1%	0.6	0.07	-71, 1284	150, 133
2.7	62.2	111	0.1%	0.15	0.05	0.9,79	150, 115
4	70	111	0.3%	0.009	0.05	0.03, 0.3	100, 87

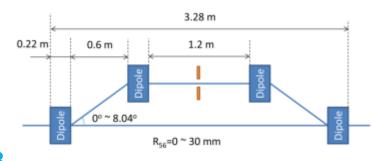
ARES linac baseline layout

Q=0.5 pC, Ne=3.12*10^6


Beam at the exit of the linac for 3 different working points

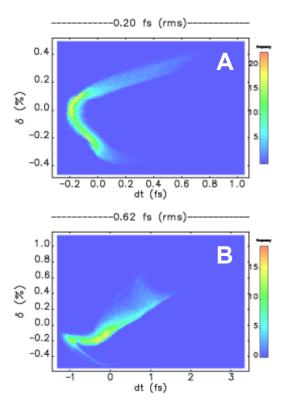
FWHM _z [fs]	Q % in 1 FWHM	E [MeV]	ΔΕ/Ε	σ _{x,y} [mm]	nɛ _{x,y} [mm*mrad]	(α _{x,y} ,β _{x,y} [m])	(I _p local, I _p 1FWHM)[A]
2.1	50.6	110	0.1%	0.6	0.07	-71, 1284	150, 133
2.7	62.2	111	0.1%	0.15	0.05	0.9,79	150, 115
4	70	111	0.3%	0.009	0.05	0.03, 0.3	100, 87

Small spot-size for matching into plasma



- Bunch compressor/ dogleg
- Energy upgrade of linac
- X-band for TDS and PS linearization
- Timing synchronization upgrade
- Additional undulators
- Imaging beam line

Bunch Compressor

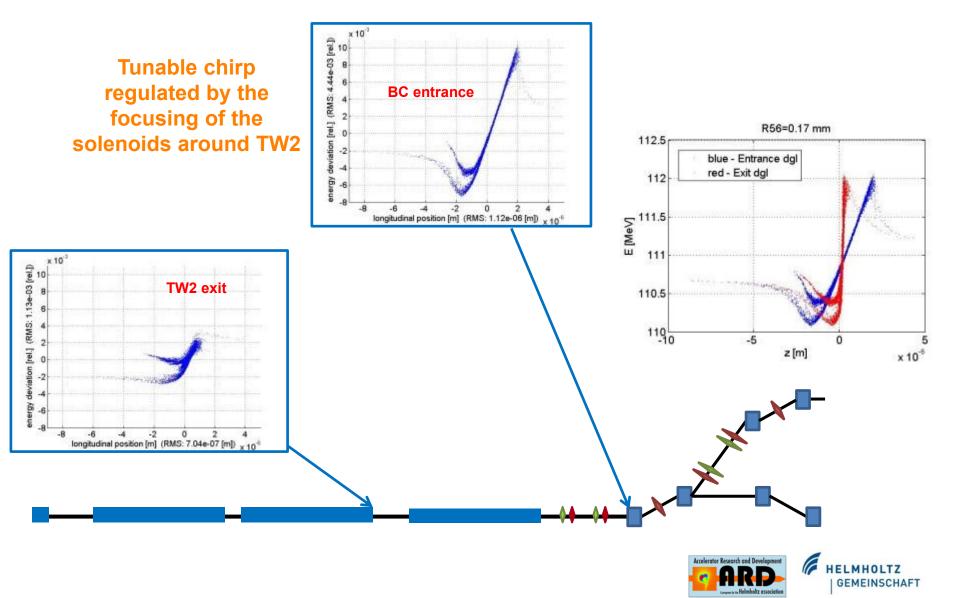


Working point A

Initial charge (pC)	10
Gun gradient (MV/m)	110.0
Gun phase (deg)	0.0
Laser pulse duration (ps)	3.0
TW1 gradient (MV/m)	23.9
TW1 phase (deg)	-59.2
TW1 gradient (MV/m)	23.9
TW1 phase (deg)	-59.2
R56 (mm)	10.0
Slit width (mm)	0.4
Final charge (pC)	0.38
ε _x (μm)	0.05
ε _y (μm)	0.05
Energy spread	0.0019
Current (A)	650

Working point B

Initial charge (pC)	100
Gun gradient (MV/m)	110.0
Gun phase (deg)	0.0
Laser pulse duration (ps)	3.0
TW1 gradient (MV/m)	23.9
TW1 phase (deg)	-60.0
TW1 gradient (MV/m)	23.9
TW1 phase (deg)	-60.0
R56 (mm)	10.0
Slit width (mm)	0.4
Final charge (pC)	2.77
ε _x (μm)	0.24
ε _y (μm)	0.18
Energy spread	0.0022
Current (A)	1528


Study and simulations: J. Zhu

References: P. Emma, Phys. Rev. Lett. 92, 074801(2004) S. Di Mitri, PRSTAB 16, 042801 (2013)

SEITE 13

Dogleg – hybrid compression scheme

- Bunch compressor/ dogleg
- Energy upgrade of linac
- X-band for TDS and PS linearization
- Timing synchronization upgrade
- Additional undulators
- Imaging beam line

- Bunch compressor/ dogleg
- Energy upgrade of linac
- X-band for TDS and PS linearization
- Timing synchronization upgrade
- Additional undulators
- Imaging beam line

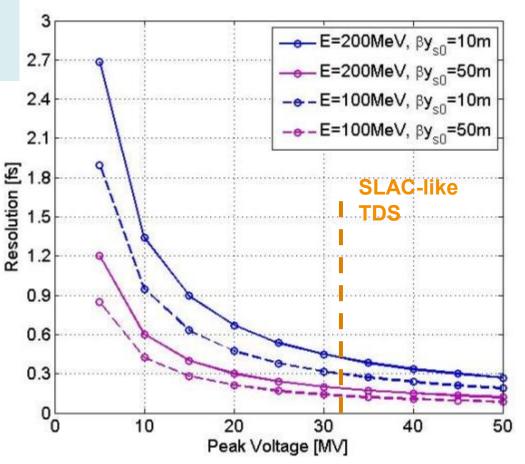
One more LINAC II–like Traveling wave structure (2.998 GHz), Total av. Gradient~80MV/100MV

Total energy upgrade: 200 MeV (on-crest) → 300 MeV(on-crest)

- Bunch compressor/ dogleg
- Energy upgrade of linac
- X-band for TDS and PS linearization
- Timing synchronization upgrade
- Additional undulators
- Imaging beam line

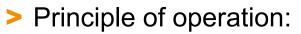
Xband Transverse Deflecting Structure for beam diagnostics

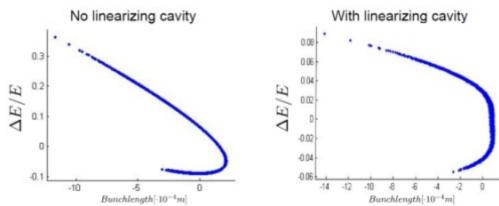
Presently Xband RF deflectors are the highest resolution (~1fs) bunch length diagnostics device. *Cfr: C. Behrens et al., Nat. Commun. 5, 3762 (2014)*


Beam parameters:

 $\epsilon n_{x,y}$ =0.1 mm mrad $\Delta \phi = \pi/2$ (phase advance between the cavity and the screen)

RF cavity parameters: f=11.9920 GHz


$$\mathcal{R}_{t,e} = \frac{\sigma_{y0}}{S_y} = \frac{\sqrt{\beta_y(s)\varepsilon_y}E}{\sqrt{\beta_y(s)\beta_y(s_0)}\mathrm{sin}(\Delta\phi_y)e\omega V_y}$$


Cfr: P. Emma et al., LCLS-TN-00-12 M. Röhrs et. al., PRSTAB 12 050704 (2009)

Xband linearizing cavity

- If the length of the photo-cathode laser pulse at the cathode is ~ > 2-3ps, the non-linearity in the phase space of the beam caused by the sinusoidal shape of the RF is not negligible.
 - Optimization of the single bunch compression
 - → Cfr: K. Flöttmann, NIM A 740, p. 34-38 (2014).
 - Compression of train of bunches (total length of the train 3-10 ps)
 → Cfr: M. Ferrario et al., Nucl. Instrum. Methods Phys. Res. A 637, S43-S46 (2011).
 → E. Chiadroni et al., Rev: Sci. Instrum. 84, 022703 (2013).
 → B. Marchetti et al., Proc. of IPAC11, THPS101 (2011).

- Bunch compressor/ dogleg
- Energy upgrade of linac
- X-band for TDS and PS linearization
- Timing synchronization upgrade
- Additional undulators
- Imaging beam line

- Bunch compressor/ dogleg
- Energy upgrade of linac
- X-band for TDS and PS linearization
- Timing synchronization upgrade → Holger Schlarb
- Additional undulators
- Imaging beam line

Talk: "ST3: ps and fs electron and photon beams" Wed 25/02, 8:30

- LLRF development (Xband)
- Pulsed Optical Synchronization
- Klystron ultra-fast stabilization
- Basic system for operation:
- <10 fs local RMS jitter
- ~ 50fs pkpk drift
- Upgrade:
- < 5 fs local RMS jitter
- <10fs pkpk drift

- Bunch compressor/ dogleg
- Energy upgrade of linac
- X-band for TDS and PS linearization
- Timing synchronization upgrade
- Additional undulators
- Imaging beam line

- Bunch compressor/ dogleg
- Energy upgrade of linac
- X-band for TDS and PS linearization
- Timing synchronization upgrade
- Additional undulators → Andreas Maier
- Imaging beam line

Talk: "FEL applications" Wed 25/02, 15:20

- Bunch compressor/ dogleg
- Energy upgrade of linac
- X-band for TDS and PS linearization
- Timing synchronization upgrade
- Additional undulators
- Imaging beam line

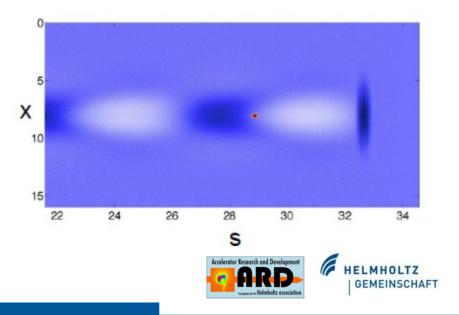
Brilliant hard X-rays from <u>laser-driven</u> <u>Thomson-source</u>:

image in-vivo medical diagnostic agents such as anti-bodies coupled to Gold nano-clusters whose X-ray fluorescence light is the signal. The potential is to reach sensitivities beyond Magnetic Resonance Tomography.

Plasma Acceleration

STABILITY FOR APPLICATIONS

External vs Internal Injection


• Electrons can be externally injected or internally created

External injection	Internal injection
 + Known and controllable (within limits) initial beam phase space + Staging is possible / prove of staging - Synchronization 	 + More compact/cheaper/simpler + Higher plasma densities (= higher gradients) can be used - Control over the injected phase-space volume

 It is clear that staging will be needed to reach high energy physics energies. External injection is the crucial step towards this goal.

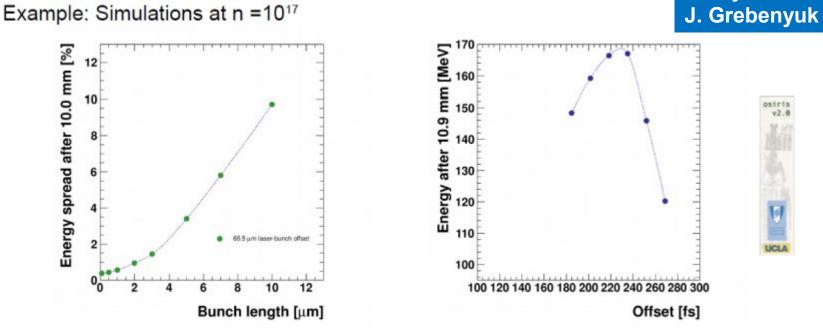
Transverse matching

 Most experiments use internal injection as it's simpler and cheaper

External Injection at SINBAD

- ARES = $100 \text{MeV} \rightarrow \text{e-ultra-relativistic} \rightarrow \text{``no''}$ (less) de-phasing issue
- Scaling laws:
 - Accelerating gradient: $E_0[V/m] \approx 96\sqrt{n_0[cm^{-3}]}$
 - Plasma bubble length: $\lambda_p \propto 1/\sqrt{n_0}$
 - Acceleration length (depends on diffraction and dephasing): $1 \propto 1/\sqrt{n_0^3}$

Plasma density [cm ⁻³]	Wavelength	Period	Skindepth
10 ¹⁹	10.6 µm	35.3 fs	1.68 µm
10 ¹⁸	33.4 µm	101.3 fs	5.31 µm
10 ¹⁷	106 µm	353.3 fs	16.8 µm
10 ¹⁶	334 µm	1.0 ps	53.1 µm
10 ¹⁵	1.06 mm	3.53 ps	0.168 mm
10 ¹⁴	3.34 mm	10.0 ps	0.531 mm


External Injection at SINBAD

- ARES = $100 \text{MeV} \rightarrow \text{e-ultra-relativistic} \rightarrow \text{``no''}$ (less) de-phasing issue
- Scaling laws:
 - Accelerating gradient: $E_0[V/m] \approx 96\sqrt{n_0[cm^{-3}]}$
 - Plasma bubble length: $\lambda_p \propto 1/\sqrt{n_0}$
 - Acceleration length (depends on diffraction and dephasing): $1 \propto 1/\sqrt{n_0^3}$

	Plasma density [cm ⁻³]	Wavelength	Period	Skindepth	
	10 ¹⁹	10.6 µm	35.3 fs	1.68 µm	
	10 ¹⁸	33.4 μm	101.3 fs	5.31 μm	
_	10 ¹⁷	106 µm	353.3 fs	16.8 μm	
L	10 ¹⁶	334 µm	1.0 ps	53.1 μm	
	1015	1.06 mm	3.53 ps	0.168 mm	
	10 ¹⁴	3.34 mm	10.0 ps	0.531 mm	

SINBAD/LAOLA Stages – 200 MeV beam

- Laser guiding to achieve high energies at low densities is needed
- Driver-bunch RMS synchronization jitter requirements: 5 30 fs
- With good synchronization & ultra-short injected bunches, a single-shot energy spread below 1% is achievable
- Bunch length with RMS < 5 fs bunches desirable
- When matched, no emittance degradation → matching to small beta required (optics + adiabatic density transitions)
- Initial stage at $n = 10^{16}$ has "relaxed" requirements

Study and simulations:

SINBAD/LAOLA Stages – 1 GeV beam

Study and simulations: J. Grebenyuk

Plasma density [cm ⁻³]	10 ¹⁸	10 ¹⁷	1016	0.5×10 ¹⁶
Skindepth, k_p^{-1} [μ m]	5.31	16.8	53.1	75.2
Plasma wavelength, λ_p [μ m]	33.4	106	334	472
Injection beam energy [MeV]	100	100	100	100
Laser pulse duration [fs]	25	25	25	25
Field gradient (OSIRIS) [GV/m]	62	7.58	0.46	0.21
Accelerating region, $\lambda_p/4$ [µm]	8.35	26.5	83.5	118
200 MeV stage length [m]	1.6×10^{-3}	13.2×10^{-3}	0.22	0.48
1 GeV stage length [m]	16×10^{-3}	0.13	2.2	4.8
Matched β [mm]	0.1	0.3	1	1.5

SINBAD/LAOLA Stages – 1 GeV beam

Study and simulations: J. Grebenyuk

Plasma density [cm ⁻³]	10 ¹⁸	10 ¹⁷	1016	0.5×10 ¹⁶
Skindepth, k_p^{-1} [μ m]	5.31	16.8	53.1	75.2
Plasma wavelength, λ_p [μ m]	33.4	106	334	472
Injection beam energy [MeV]	100	100	100	100
Laser pulse duration [fs]	25	25	25	25
Field gradient (OSIRIS) [GV/m]	62	7.58	0.46	0.21
Accelerating region, $\lambda_p/4$ [µm]	8.35	26.5	83.5	118
200 MeV stage length [m]	1.6×10^{-3}	13.2×10^{-3}	0.22	0.48
1 GeV stage length [m]	16×10^{-3}	0.13	2.2	4.8
Matched β [mm]	0.1	0.3	1	1.5

That's about it...

Aknowledgments

- ATHENA preparation team !
- LAOLA team !
- All involved DESY groups !

... Thank you for the attention!

