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Scattering Amplitudes

• Gluon scattering amplitudes in QCD and supersymmetric gauge the-

ories are very difficult to compute, so this is a fertile ground for new

insights and methods.

• We have learned that Feynman diagrams are not the most efficient

way to calculate scattering amplitudes: too messy+too many terms+hide

the structure of amplitudes.

• There has been a lot of progress on tree amplitude calculations. [Bern,

Dixon, Kosower] [Witten] [Cachazo, Svrcek, Witten] [Britto, Cachazo,

Feng] [Roiban, Spradlin, AV] [Brandhuber, Spence, Travaglini] [Dixon,

Glover, Khoze] [Bern, Dixon, Kosower] [Arkani-Hamed, Kaplan] [many

others]

All tree level perturbative amplitides are under control.



One-Loop Amplitudes

In the N = 4 theory, the problem of computing any one-loop amplitude

can be reduced to that of computing tree amplitudes. (1990-2004)

Scalar box integrals provide a complete basis for all one-loop gluon

amplitudes in N = 4 [Bern, Dixon, Kosower].

A1−loop =
∑

boxes

(coefficient)

k1,...,i

ki+1,...,j kj+1,...,l

kl+1,...,n

Generalized unitarity methods can be used to determine the coefficients

for a desired amplitude [Bern, Dixon, Kosower][Britto, Cachazo, Feng].



Higher Loops

Unitarity based methods for computing the coefficients can be gener-

alized to higher loop amplitudes [Bern, Dixon, Smirnov, 2005] [Buch-

binder, Cachazo, 2005] [Bern, Czakon, Dixon, Kosower, Smirnov, 2006]

[Bern, Carrasco, Johansson, Kosower, 2007]

Unfortunately a complete basis of integrals is not known even for all

two-loop amplitudes...

For example, the two-loop four-particle amplitude is given by the sum

of only two scalar integrals [Bern, Rozowsky, Yan, 1997]

+

But in general it is not trivial to determine which integrals contribute to

any particular amplitude.



The Method

In my talk I will describe a method called the leading singularity method

[Cachazo, 2008], [Cachazo, Spradlin, AV, 2008], which is a refinement

of [Buchbinder, Cachazo, 2005], [Bern, Carrasco, Johansson, Kosower,

2007] [Cachazo, Skinner, 2008]. Via this set of techniques,

• a natural basis of integrals is provided (does not coincide with dual

conformally invariant basis),

• the coefficients are determined by solving simple linear equations,

• and these linear equations are easy to write down by hand (for MHV

at least).

Basic idea: Feynman diagrams possess singularity which must be re-

produced by any representation of the amplitude in terms of simpler

integrals.



For example: for one-loop, five-particles, there are 2×5 different points

in C
4 where the integrand has an order-4 pole. Diagramatically:

and four cyclic permutations

This diagram represents the set

S = {` ∈ C
4 : `2 = 0, (` − k1)

2 = 0, (` − k1 − k2)
2 = 0, (` + k5)

2 = 0}

which consists of two distinct points {`(1), `(2)} (for generic external

momenta).

The residue of the amplitude at any singularity is obtained by multiply-

ing tree amplitudes, summed over all allowed internal helicities:

∑

h

AtreeAtreeAtreeAtree

∣∣∣∣∣
l(1)

= 0,

∑

h

AtreeAtreeAtreeAtree

∣∣∣∣∣
l(2)

= Atree
5



By comparing to the ansatz

B + P

for some coefficients B and P , we find 2 equations

B +
P

(`(1) + k5 + k4)2
= 0, B +

P

(`(2) + k5 + k4)2
= Atree

5

which determine the coefficients. [Cachazo, 2008]

From each pole we get an equation!

Reduction of a pentagon to a sum of boxes with particular coefficients!

[Bern, Dixon, Kosower, 1993]



The Target

Much of what I will say in this talk will be more general, but the specific

target of our calculation is the two-loop six-particle MHV amplitude in

N = 4 super-Yang Mills theory.

The parity-even part of this amplitude was recently presented in [Bern,

Dixon, Kosower, Roiban, Spradlin, Vergu, AV, 2008]

The parity-odd part was presented in [Cachazo, Spradlin, AV, 2008]

In fact the helicity information (MHV versus non-MHV) appears only in

the homogeneous terms of linear equations, so much of the work done

for the MHV amplitude can be applied directly to NMHV [in progress]

Three-loop five-point amplitude [Spradlin, AV, Wen, to appear]



Background: Calculation of Amplitudes

Any L-loop scattering amplitude can, in principle, be obtained by sum-

ming over all Feynman diagrams:

A(L)(p) =

∫
d`1 · · · d`L

∑

j

Fj(p, `) (1)

p = external momenta

` = loop momenta

However, in practice this is a hopeless exercise due to the enormously

large number of Feynman diagrams and their complexity in Yang-Mills

theory.



Background: Calculation of Amplitudes

A(L)(p) =

∫
d`1 · · · d`L

∑

j

Fj(p, `) (2)

Rather, calculations typically proceed by first finding a representation

of the amplitude in terms of a relatively simple basis of integrals {Ii}:

A(L)(p) =
∑

i

ci(p)

∫
d`1 · · · d`L Ii(p, `) (3)

where the coefficients ci(p) are computed by other means, such as the

unitarity-based method [Bern, Dixon, Kosower, 1990s] or maximal cuts

[Buchbinder, Cachazo] [Bern, Carrasco, Johansson, Kosower, 2007] .



Example: Four external particles

For example, unitarity based methods were used to express the four-

particle amplitude in N = 4 Yang-Mills as the sum of the following

scalar integrals:

[Bern, Rozowsky, Yan, 1997] [Bern, Dixon, Smirnov, 2005]

[Bern, Czakon, Dixon, Kosower, Smirnov, 2006]



A Difficulty

One important difficulty is that there is no known basis of integrals in

the general case. Only in some special cases is a basis known:

• one-loop, any number of external particles;

⇒ scalar box integrals, as discussed above...

• and a very plausible conjecture exists for four particles at any num-

ber of loops which has emerged from the work of [Bern, Czakon, Dixon,

Drummond, Henn, Korchemsky, Kosower, Smirnov, Sokatchev, and oth-

ers, 2006-2007].

⇒ dual conformal integrals

• higher number of particles? Parity odd parts of two-loop amplitudes

are not given in terms of dual conformally invariant integrals. [Bern,

Dixon, Kosower, Roiban, Smirnov] [Cachazo, Spradlin, AV]



Examples of Dual Conformal Integrals
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• Points xi label the vertices of the dual graph, a solid line connecting

two points xi and xj corresponds to a factor of 1/x2
ij , while a dashed

line corresponds to a factor of x2
ij .

• An integral is dual conformal invariant if the difference between the

number of solid lines and dashed lines at a vertex equals 4 at the inter-

nal vertices and 0 at the external vertices.



Dual Conformal Invariant Diagrams at Five Loops

[Bern, Carrasco, Johansson, Kosower, 2007]
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Leading Singularity Method

Each individual singularity provides enough

linear equations to determine higher-point and

multi-particle equations:

each pole gives a different equation!

• Contours: inhomogenous part of equations

• Geometric integrals: homogeneous part of
equations



Determining the Integrand

The idea is to look at the equation

∑

i

ci(p)

∫
d`1 · · · d`L Ii(p, `) =

∫
d`1 · · · d`L

∑

j

Fj(p, `) (4)

at the level of the integrand, and instead of integrating over the real `-

axis in C4L we integrate over closed contours Γ ⊂ C4L to obtain linear

equations for the desired coefficients!

∑

i

ci(p)

∫

Γ

Ii(p, `) =

∫

Γ

∑

j

Fj(p, `) (5)

We can require this to be true for any contour Γ. By choosing many

different contours, we get many different linear equations!

Each contour computes the residue of the integrand on only one of the

many isolated singularities.



Choice of Contours

Which contours give the most useful equations?

If we choose a random contour in C4L, we get the useless equation

0 = 0

In order to get useful equations, we should identify the isolated poles of

the integrand, and for each one we consider a contour Γ ⊂ C
4L so that

integrating over this contour computes the residue at the correspond-

ing pole.

Fortunately it is easy to identify the isolated poles of the integrand:

The poles in Feynman diagrams occur when internal propagators go

on-shell.



For the two-loop six-particle amplitude there are five obvious topolo-

gies associated with singularities where eight different propagators are

going simultaneously on-shell, and hence can be associated with T 8

contours in C
8:

(A) (B)

(C) (D) (E)



For example, if we look at the first diagram:

(A)

it represents the sum over the subset of all Feynman diagrams which

contain all eight of the indicated propagators.

This set of Feynman diagrams has isolated poles at

S = {(`1, `2) ∈ C
8 : `21 = 0, (`1 + p1)

2 = 0, (`1 − p2)
2 = 0,

(`1 − p2 − p3)
2 = 0, `22 = 0, (`2 − p4)

2 = 0,

(`2 + p5)
2 = 0, (`2 + p5 + p6)

2 = 0}

For generic momenta pi this consists of four distinct points in C8.



At each of these four points, the amplitude has an isolated order-8 pole.

To calculate the residue at this pole (i.e., the result of integrating over

the corresponding contour Γ) is simple: just take the product of seven

on-shell tree-level amplitudes, at each of the grey circles, and evalu-

ate this product at the corresponding solution (`1, `2). [Bern, Dixon,

Kosower] [Buchbinder, Cachazo] [Bern, Carrasco, Johansson, Kosower]

(A)

⇒ From this topology, we get four different equations; one from each

of the four poles.



The less obvious contours with only seven propagators have more sub-

tle leading singularities. To see how these singularities arise, consider

the topology:

(F )

Although it looks like there is only a pole of order 7, not 8, there is in

fact another hidden singularity.

We need the 8th condition because without it we would still have one

unfixed loop integral; for n = 4 particle amplitudes this last integral is

trivial but for n > 4 it is not! [Bern, Carrasco, Johansson, Kosower,

2007])

To expose it, consider a contour integral which computes the residue

at either of the two singularities of the right-hand box:



(F )

To expose it, consider a contour integral which computes the residue

at either of the two singularities of the right-hand box:
∫

Γ

d4`2
1

`22(`1 + k1)2(`1 + k1 + k2)2(`1 + `2)2
=

1

2

1

(k1 + k2)2(`2 − k1)2

where the right-hand side is just the Jacobian evaluated at the loca-

tion of the singularity. Now this Jacobian has itself another singularity

1/(`2 − k1)
2.

The conclusion is that there do exist isolated poles of order 8 in such

topologies. The residues at these poles can be computed by integrating

over appropriate contours Γ.



There are a total of 8 different topologies of this type:

(F ) (G) (H) (I)

(J) (K) (L) (M)

As before, each of these topologies represents several different lead-

ing singularities (solutions of the 8 on-shell conditions), each of which

gives rise to a different linear equation ...



Contructing a Basis of Integrals

Next we need to construct a set of integrals {Ii} in terms of which to

express the amplitude.

The construction proceeds as follows:



Contructing a Basis of Integrals

Next we need to construct a set of integrals {Ii} in terms of which to

express the amplitude.

The construction proceeds as follows:

We begin with a set that just contains the 13 scalar integrals appropriate

to the 13 different topologies shown on the previous slides.

It turns out that with just this set of integrals, the linear equations have

no solution, so we must add additional integrals to the set {Ii}

There is a systematic procedure to do this, which ends when one is able

to solve all of the equations...

We can determine all the integrals and coefficients except the terms

which vanish in D = 4 (µ−terms).



Example: Topology F

(F )

⇒

I2 I19

This topology gives two different equations:

4s2
12s61 = c2 +

c19

(p(1) + k456)2
, 0 = c2 +

c19

(p(2) + k456)2
. (6)

p(1) =
〈2, 1〉

〈2, 6〉
λ6λ̃1, p(2) =

[2, 1]

[2, 6]
λ1λ̃6.

Note that if we did not have c19 there would be a contradiction (no so-

lution)!



Example: Topology F

(F )

⇒

I2 I19

Solving this 2 × 2 linear system gives the coefficients c2 and c19. Note

that the even and odd-parity parts are determined simultaneously:

1

2
(c2 + c̄2) = −2s16s

2
12 ,

1

2
(c2 − c̄2) = 2s16s

2
12

(
a + 1

a − 1

)
,

1

2
(c19 + c̄19) = 0 ,

1

2
(c19 − c̄19) = 4s2

12s61
(p(1) + k456)

2

1 − a
. (7)

where a = (p(1)+k456)2

(p(2)+k456)2



Constructing a Basis of Integrals

It can happen that when this procedure finishes, one ends up with a set

of integrals {Ii} that is overcomplete.

This happens because loop integrals for 6 or more external particles

can frequently be expressed as linear combinations of other integrals.

[van Neerven and Vermaseren, 1984][Bern, Dixon, Kosower, 1993] .

If this happens, then the equations do not have a unique solution: given

any solution {ci}, one can add any set of coefficients {c̃i} that is actu-

ally zero due to a reduction identity.



Result

We find a representation of the 2-loop six-particle MHV amplitude in

terms of

(Several of these can actually be set to zero using reduction identities).



Result

The parity-even part of the amplitude agrees with the recent result of

[Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, AV, 2008].

The parity-odd part was presented in [Cachazo, Spradlin, AV, 2008]

Note that the full coefficients, both the parity even and parity odd parts,

emerge from solving the same linear equations—in in fact it is unnatural

to separate the two parts, and we have only done this in order to make

the comparison and check our results.

Only the parity even part can be written in a basis with only dual confor-

mal integrals. The leading singularity method naturally provides a set of

geometric integrals , which includes also non-dual conformal integrals

(these appear in the parity-odd part).



The ABDK/BDS Conjecture

One reason for the recent interest in multi-loop amplitudes in N = 4

super-Yang Mills theory is the ABDK/BDS conjecture, which at two-

loops takes the form [Anastasiou, Bern, Dixon, Kosower, 2003]

M (2)
n (ε) =

1

2
(M (1)(ε))2 − (ζ(2) + ζ(3)ε + ζ(4)ε2 + · · ·)M (1)(2ε) −

π4

72
+ O(ε)

in dimensional regularization to D = 4 − 2ε.



The ABDK/BDS Conjecture

One reason for the recent interest in multi-loop amplitudes in N =

4 super-Yang Mills theory is the ABDK/BDS conjecture, which at two-

loops takes the form [Anastasiou, Bern, Dixon, Kosower, 2003]

M (2)
n (ε) =

1

2
(M (1)(ε))2 − (ζ(2) + ζ(3)ε + ζ(4)ε2 + · · ·)M (1)(2ε) −

π4

72
+ O(ε)

in dimensional regularization to D = 4 − 2ε.

This form is based on explicit computations of two-loop amplitudes for

four particles. For five-point amplitude, it has been confirmed by di-

rect calculation [Cachazo, Spradlin, AV, 2006] [Bern, Dixon, Kosower,

Roiban, Smirnov, 2006].



BDS Iteration Relations for Multiloop Amplitudes

• This iterative structure together with the exponential nature of IR

divergences suggests an all-order resummation should be possible.

[Bern, Dixon, Smirnov, 2005]

• Indeed, BDS verified the three-loop generalization for four-particle

amplitude by direct calculation, guiding the all-loop order proposal

ln Mn =
∑

∞

l=1 al(f (l)(ε)M
(1)
n (lε) + C(l) + O(ε))

where

Mn =
∑

∞

L=0 aLM
(L)
n (ε),

f (l)(ε) = f
(l)
0 + εf

(l)
1 + ε2f

(l)
2 ,

a = λ
8π2 (4πe−γ)ε.



Why compute two-loop six-point amplitude?

•Alday and Maldacena (2007) have given a prescription for using AdS/CFT

to calculate gluon scattering amplitudes at strong coupling.

• Their calculations confirmed the strong coupling prediction from the

BDS iteration ansatz for the four-point amplitude and suggested dis-

agreement in the limit of a large number of legs, between the Wilson

loop calculation and BDS asnatz.

• Drummond, Henn, Korchemsky, Sokatchev and Brandhuber, Heslop,

Travaglini (2007) showed that lowest-order contributions to a light-like

rectangular Wilson loop agrees with BDS ansatz for gauge theory am-

plitudes.

• Either the connection between Wilson loops and the amplitudes breaks

down? Or BDS ansatz breaks down beyond five-point amplitudes? To

answer, one needs six-point Wilson loop and amplitude calculations!



Two-loop six-point amplitude: Even part

We find the complete expression for the parity-even part of the two-loop

six-particle amplitude [Bern, Dixon, Kosower, Roiban, Spradlin, Vergu,

AV, 2008]

We performed the calculation using the unitarity-based method, em-

ploying a variety of cuts to express the amplitude in terms of selected

set of six-point two-loop Feynman integrals.

M
(2),D=4−2ε
6 (ε) =

1

16

15∑

i=1

ciI
(i)(ε)

We evaluated the integrals using AMBRE and MB packages and com-

puted the amplitude numerically against BDS ansatz, and against val-

ues for the corresponding Wilson loop.



Two-loop six-point amplitude: integrals

p

×(p + k1)
2

p

×(p + k1)
2

p

×(p + k1)
2

p

×(p + k5)
2

p q

×(p + k3)
2

×(q + k6)
2

p q

×(p + k3)
2

×(q + k2)
2

p q

×λp · λq

p

×λ2
p



Two-loop six-point amplitude: coefficients

c1 = s61s34s123s345 + s12s45s234s345 + s2
345(s23s56 − s123s234) ,

c2 = 2s12s
2
23 ,

c3 = s234(s123s234 − s23s56) ,

c4 = s12s
2
234 ,

c5 = s34(s123s234 − 2s23s56) ,

c6 = −s12s23s234 ,

c7 = 2s123s234s345 − 4s61s34s123 − s12s45s234 − s23s56s345 ,

c8 = 2s61(s234s345 − s61s34) ,

c9 = s23s34s234 ,

c10 = s23(2s61s34 − s234s345) ,

c11 = s12s23s234 ,

c12 = s345(s234s345 − s61s34) ,

c13 = −s2
345s56 ,

c14 = −2s126(s123s234s345 − s61s34s123 − s12s45s234 − s23s56s345) ,

c15 = 2s61(s123s234s345 − s61s34s123 − s12s45s234 − s23s56s345) . (8)



An example of an integral

I(12) =
(−1)1+2ηe2εγ

Γ(−1 − 2ε − η)Γ(η)

∫ +i∞

−i∞

· · ·

∫ +i∞

−i∞

18∏

j=1

dzj

2πi
Γ(−zj)

×
Γ(3 + ε + η + z1,2,3,4,5,6,7,8,9,10)

Γ(4 + ε + η + z1,2,3,4,5,6,7,8,9,10)
Γ(1 + z3,5,9)

×(−s12)
z8,13(−s23)

z14(−s34)
z1,18(−s45)

z3,15(−s61)
z11

×(−s123)
z9,16(−s234)

z17(−s345)
z2,12

×(−s56)
−5−2ε−2η−z1,2,3,8,9,11,12,13,14,15,16,17,18

×
Γ(−3 − ε − z1,2,3,4,5,6,7)

Γ(−3 − 3ε − 2η − z1,2,3,8,9,10)

×
Γ(5 + 2ε + 2η + z1,2,3,8,9,10,11,12,13,14,15,16,17,18)

Γ(1 − z4)Γ(η − z5)Γ(−z6)Γ(1 − z7)
×Γ(−5 − 2ε − 2η − z1,2,3,6,8,9,10,11,12,13,14,15,16)

×Γ(−1 − ε − η + z4,5,6,7 − z11,12,14,15,17,18)

×Γ(−2 − ε − η − z1,2,3,8,9,10)Γ(η − z5 + z14,15,16)

×Γ(1 − z4 + z12,13,18)Γ(1 + z1,2,4,8)

×Γ(1 − z7 + z11,12,15)Γ(1 + z1,6,10)Γ(1 + z2,3,7)Γ(1 + z11,14,17)(9)



An example of an integral

I(12) = −
1

ε4

[
3s123

(−s12)1+2ε s61s34s45
+

s23s56

s12s61s34s45(−s234)1+2ε

+
1

s61s34(−s345)1+2ε

]
+

1

ε3

[
s123

s12s61s34s45
ln

(
s2
234s

6
345

s23s3
34s

3
45s56

)

+
s23s56

s12s61s34s45s234
ln

(
s23s56s

2
345

s2
12s34s45

)
+

1

s61s34s345
ln

(
s45s234s345

s23s34s56

)

+
1

s61s34 − s234s345

s45s234s12 + 2s345s23s56

s45s234s12s345
ln

(
s61s34

s234s345

)

+
s12s45s234 + (s23s56 + 3s123s234)s345

s12s61s34s45s234s345
ln

(
s12

s61

)]
+ O(ε−2) ,



Two-loop six-point amplitude: Results

[Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, AV, 2008]

• Discrepancy with BDS ansatz.

• But agreement with Wilson loop calculations by [Drummond, Henn,

Korchemsky and Sokachev, 2008] !!!

kinematics (u1, u2, u3) ∆A ∆W

K(1) (1/4, 1/4,1/4) −0.0181 ± 0.017 < 10−5

K(2) (0.547253, 0.203822, 0.88127) −2.753 ± 0.012 −2.7553

K(3) (28/17, 16/5,112/85) −4.74445± 0.00653 −4.7446

K(4) (1/9, 1/9,1/9) 4.1161 ± 0.10 4.0914

K(5) (4/8, 4/81,4/81) 9.9963 ± 0.50 9.7255



Two-loop six-point amplitude: Odd part

ABDK/BDS ansatz breaks down for parity-even part of the two-loop

six-particle MHV amplitude. [Bern, Dixon, Kosower, Roiban, Spradlin,

Vergu, AV, 2008]

The parity-odd part of the two-loop six-particle amplitude does in fact

satisfy ABDK/BDS. [Cachazo, Spradlin, AV, 2008]

For instance, denoting the left- and right-hand sides of ABDK/BDS ansatz

by L and R respectively, at randomly generates momenta, we find

L(ε) = −
4 × 10−16

ε4
+

4 × 10−15

ε3
+

1(2) × 10−11

ε2
−

0.430(7)

ε
− 0.9(1) + · · · ,

R(ε) = −
0.428(2)

ε
− 0.92(1) + O(ε) (10)

(It is in fact reasonable to believe that the parity-odd part always satis-

fies ABDK/BDS, but this remains unproven.)



Three-loop five-point amplitude

G D A

C N L

K R B

The first seven enter the amplitude with coefficient +1, the last two with

coefficient −1. [Spradlin, AV, Wen, to appear]



Three-loop five-point amplitude

The one, two and three loop “obstructions” are

M (1) = −
5

2

1

ε2
+

5π2

8
+

179ζ(3)

24
ε +

97π4

1440
ε2 −

(
51π2ζ(3)

32
−

137ζ(5)

8

)
ε3 − · · ·

M (2) =
25

8

1

ε4
−

35π2

24

1

ε2
−

865ζ(3)

48

1

ε
−

97π4

1152
+ · · ·

M (3) = −
125

48

1

ε6
+

325π2

192

1

ε4
+

4175ζ(3)

192

1

ε3
+

499π4

10368

1

ε2
+ · · ·

These obstructions satisfy the expected BDS relation

M (3)(ε) = −
1

3
(M (1)(ε))3 + M (1)(ε)M (2)(ε) + f (3)M (1)(3ε) + C(3) + O(ε)

with

f (3) =
11π4

180
+

(
5π2ζ(3)

6
+ 6ζ(5)

)
ε + N1ε

2, C(3) = N2.

with N1 and N2 to be announced...



Conclusions

The motivation for our work was two-fold

• To unlock previously hidden mathematical richness lurking deep in-

side multi-loop gluon amplitudes in N = 4 SYM, and

• To exploit that structure to help simplify otherwise formidable com-

putations.

The leading singularity method provides a relatively simple way to find

representations of complicated amplitudes in terms of a simple basis

of integrals by just solving linear equations.

One final comment is that the helicity information (MHV versus non-

MHV) appears only in the inhomogeneous terms (the right-hand side)

of the equations.
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Open Questions

How far need one calculate before unlocking all the structure?

How much is gained by adding one more loop, or one more leg?

Every new calculation has led to a new surprise!

In the case of loops, there were strong reasons to suspect that special

things would start happening at four loops (and they did!) so there

was great interest in the calculation of the four-loop cusp anomalous

dimension. Five loops: cancellation of ζ(6, 2)?

In the case of legs, starting at six-points BDS ansatz breaks down while

Wilson loop/amplitude duality holds, suggesting that there should be

an additional mechanism besides dual conformal symmetry.

Resummations, non-MHV, non-planar, connection to integrability, other

quantities, string theory side, etc.


