Superstrings on $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$ as a Coset Sigma Model

Gleb Arutyunov

Institute for Theoretical Physics
Utrecht University

Introduction

Multiple M 2 branes
$\mathrm{AdS}_{4} \times \mathrm{S}^{7} / \mathbb{Z}_{k}$
Aharony, Bergman, Jafferis and Maldacena, hep-th/0806.1218

- Parameters of Chern-Simons theory N and k or

$$
N \quad \text { and } \quad \lambda=2 \pi^{2} N / k \quad \leftarrow \quad \text { 't Hooft coupling }
$$

- 't Hooft limit $\quad N \rightarrow \infty, \quad \lambda$ finite

Type IIA Strings
$\mathcal{N}=6$ Chern-Simons Theory
$\operatorname{AdS}_{4} \times \mathbb{C P}^{3}$ planar, perturbative in λ

The goal is to understand the dynamics of

Type IIA Strings on
 $$
\operatorname{AdS}_{4} \times \mathbb{C P}^{3}
$$

Plan

1. Coset Sigma Model
2. Brief Intro into $\mathfrak{o s p}(2,2 \mid 6)$
3. Automorphism of Order Four
4. The Lagrangian and Eoms
5. Local Fermionic Symmetry
6. Integrability of the Coset Model
7. Plane-wave Limit
8. Conclusions

Sigma Model on the Coset Space

$$
\frac{\operatorname{OSP}(2,2 \mid 6)}{\mathrm{SO}(3,1) \times \mathrm{U}(3)}
$$

$\operatorname{OSP}(2,2 \mid 6)$ has a bosonic subgroup $\operatorname{USP}(2,2) \times \mathrm{SO}(6)$

$$
\frac{\mathrm{USP}(2,2)}{\mathrm{SO}(3,1)} \times \frac{\mathrm{SO}(6)}{\mathrm{U}(3)}=\mathrm{AdS}_{4} \times \mathbb{C P}^{3}
$$

The coset superspace contains 24 fermions - too little for Type IIA!

Superalgebra $\mathfrak{o s p}(2,2 \mid 6)$

$\mathfrak{o s p}(2,2 \mid 6)$ can be realized by 10×10 supermatrices

$$
A=\left(\begin{array}{ll}
X_{4 \times 4} & \theta_{4 \times 6} \\
\eta_{6 \times 4} & Y_{6 \times 6}
\end{array}\right)
$$

The matrix A must satisfy two conditions

$$
\begin{aligned}
& A^{s t}\left(\begin{array}{cc}
C_{4} & 0 \\
0 & \mathbb{I}_{6 \times 6}
\end{array}\right)+\left(\begin{array}{cc}
C_{4} & 0 \\
0 & \mathbb{I}_{6 \times 6}
\end{array}\right) A=0 \quad \Rightarrow \quad A^{s t}=-\check{C} A \check{C}^{-1} \\
& A^{\dagger}\left(\begin{array}{cc}
\Gamma^{0} & 0 \\
0 & -\mathbb{I}_{6 \times 6}
\end{array}\right)+\left(\begin{array}{cc}
\Gamma^{0} & 0 \\
0 & -\mathbb{I}_{6 \times 6}
\end{array}\right) A=0 \Rightarrow A^{\dagger}=-\check{\Gamma} A \check{\Gamma}^{-1}
\end{aligned}
$$

$\checkmark \quad C_{4}$ is real skew-symmetric matrix, $C_{4}^{2}=-\mathbb{I}$
$\checkmark \quad \Gamma^{\mu}$ represent the Clifford algebra for $\mathrm{SO}(3,1)$
$\checkmark \quad C_{4}$ is charge conjugation matrix: $\left(\Gamma^{\mu}\right)^{t}=-C_{4} \Gamma^{\mu} C_{4}^{-1}$

Automorphism of order 4

\mathbb{Z}_{4}-automorphism with a stationary algebra $\mathrm{SO}(3,1) \times \mathrm{U}(3)$?
Introduce

$$
K_{4}=-\Gamma^{1} \Gamma^{2}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) \quad K_{6}=\left(\begin{array}{rrrrrr}
0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 0
\end{array}\right)
$$

These matrices obey $K_{4}^{2}=-\mathbb{I}$ and $K_{6}^{2}=-\mathbb{I}$ and also

$$
\left(\Gamma^{\mu}\right)^{t}=K_{4} \Gamma^{\mu} K_{4}^{-1}
$$

for all gamma-matrices

Automorphism of order 4

$$
\Omega(A)=\left(\begin{array}{cc}
K_{4} X^{t} K_{4} & K_{4} \eta^{t} K_{6} \\
-K_{6} \theta^{t} K_{4} & K_{6} Y^{t} K_{6}
\end{array}\right)
$$

For any two supermatrices A and B

$$
\Omega(A B)=-\Omega(B) \Omega(A)
$$

i.e. it is an automorphism of $\mathfrak{o s p}(2,2 \mid 6)$

$$
\Omega([A, B])=-[\Omega(B), \Omega(A)]=[\Omega(A), \Omega(B)] .
$$

Automorphism of order 4

The algebra relations imply

$$
\Omega(A)=\left(\begin{array}{rr}
K_{4} C_{4} & 0 \\
0 & -K_{6}
\end{array}\right)\left(\begin{array}{ll}
X & \theta \\
\eta & Y
\end{array}\right)\left(\begin{array}{rr}
K_{4} C_{4} & 0 \\
0 & -K_{6}
\end{array}\right)^{-1} \equiv \Upsilon A \Upsilon^{-1}
$$

- Since $\left(K_{4} C_{4}\right)^{2}=\mathbb{I}$ and $K_{6}^{2}=-\mathbb{I}$ one finds $\Upsilon^{4}=\mathbb{I}$
- $K_{4} C_{4}$ coincides with Γ^{5} given by $\Gamma^{5}=-i \Gamma^{0} \Gamma^{1} \Gamma^{2} \Gamma^{3}$
- Υ takes values in the complexified $\operatorname{OSP}(2,2 \mid 6)$,
i.e. it is orthosymplectic but not unitary: $\Upsilon^{\dagger} \check{\Gamma} \Upsilon \check{\Gamma}^{-1}=-\mathbb{I}$

\mathbb{Z}_{4}-grading of $\mathfrak{o s p}(2,2 \mid 6)$

As the vector space $\mathbf{A}=\mathfrak{o s p}(2,2 \mid 6)$ can be decomposed as

$$
\mathbf{A}=\mathbf{A}^{(0)} \oplus \mathbf{A}^{(1)} \oplus \mathbf{A}^{(2)} \oplus \mathbf{A}^{(3)}
$$

such that $\left[\mathbf{A}^{(k)}, \mathbf{A}^{(m)}\right] \subseteq \mathbf{A}^{(k+m)}$ modulo \mathbb{Z}_{4}.

Each $\mathbf{A}^{(k)}$ is an eigenspace of Ω

$$
\Omega\left(\mathbf{A}^{(k)}\right)=i^{k} \mathbf{A}^{(k)}
$$

A projection $A^{(k)}$ of a generic element $A \in \mathfrak{o s p}(2,2 \mid 6)$ is

$$
A^{(k)}=\frac{1}{4}\left(A+i^{3 k} \Omega(A)+i^{2 k} \Omega^{2}(A)+i^{k} \Omega^{3}(A)\right) \in \mathfrak{o s p}(2,2 \mid 6)
$$

Stationary subalgebra of Ω

The stationary subalgebra of Ω is determined by

$$
\left[\Gamma^{5}, X\right]=0, \quad\left[K_{6}, Y\right]=0
$$

and it coincides with $\mathfrak{s o}(3,1) \times \mathfrak{u}(3)$.

- X is generated by $\frac{1}{2}\left[\Gamma^{\mu}, \Gamma^{\nu}\right]$
- Y can be parametrized as follows

$$
Y=\left(\begin{array}{rrrrrr}
0 & y_{12} & y_{24} & -y_{23} & y_{26} & -y_{25} \\
-y_{12} & 0 & y_{23} & y_{24} & y_{25} & y_{26} \\
-y_{24} & -y_{23} & 0 & y_{34} & y_{46} & -y_{45} \\
y_{23} & -y_{24} & -y_{34} & 0 & y_{45} & y_{46} \\
-y_{26} & -y_{25} & -y_{46} & -y_{45} & 0 & y_{56} \\
y_{25} & -y_{26} & y_{45} & -y_{46} & -y_{56} & 0
\end{array}\right)
$$

This 9-parametric matrix describes an embedding $\mathfrak{u}(3) \subset \mathfrak{s o}(6)$.

The space $A^{(2)}$ - bosonic coset $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

The space $A^{(2)}$ is spanned by matrices

$$
\Omega(A)=\Upsilon A \Upsilon^{-1}=-A
$$

Any such matrix satisfies the remarkable identity

$$
A^{3}=\frac{1}{8} \operatorname{str}\left(\sum A^{2}\right) A+\frac{1}{8} \operatorname{str}\left(A^{2}\right) \sum A
$$

or

$$
A^{3}=\frac{1}{8}\left(\operatorname{tr} A_{\mathrm{AdS}}^{2}+\operatorname{tr} A_{\mathbb{C P}}^{2}\right) A+\frac{1}{8}\left(\operatorname{tr} A_{\mathrm{AdS}}^{2}-\operatorname{tr} A_{\mathbb{C P}}^{2}\right) \Sigma A
$$

Here Σ is a diagonal matrix $\Sigma=\Upsilon^{2}=\left(\mathbb{I}_{4},-\mathbb{I}_{6}\right)$

The Lagrangian

Let g be a coset representative. Construct the one-form

$$
A=-g^{-1} \mathrm{~d} g=A^{(0)}+A^{(2)}+A^{(1)}+A^{(3)}
$$

It has zero curvature

$$
\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}-\left[A_{\alpha}, A_{\beta}\right]=0
$$

The sigma model action

$$
S=-\frac{R^{2}}{4 \pi \alpha^{\prime}} \int \mathrm{d} \sigma \mathrm{~d} \tau \mathscr{L}
$$

with the Lagrangian density

$$
\mathscr{L}=\gamma^{\alpha \beta} \operatorname{str}\left(A_{\alpha}^{(2)} A_{\beta}^{(2)}\right)+\kappa \epsilon^{\alpha \beta} \operatorname{str}\left(A_{\alpha}^{(1)} A_{\beta}^{(3)}\right)
$$

Here $\gamma^{\alpha \beta}=h^{\alpha \beta} \sqrt{-h}$ with $\operatorname{det} \gamma=-1$

Equations of motion

- Bosons

$$
\partial_{\alpha}\left(\gamma^{\alpha \beta} A_{\beta}^{(2)}\right)-\gamma^{\alpha \beta}\left[A_{\alpha}^{(0)}, A_{\beta}^{(2)}\right]+\frac{1}{2} \kappa \epsilon^{\alpha \beta}\left(\left[A_{\alpha}^{(1)}, A_{\beta}^{(1)}\right]-\left[A_{\alpha}^{(3)}, A_{\beta}^{(3)}\right]\right)=0
$$

- Fermions

$$
\begin{aligned}
& \mathrm{P}_{-}^{\alpha \beta}\left[A_{\alpha}^{(2)}, A_{\beta}^{(3)}\right]=0, \\
& \mathrm{P}_{+}^{\alpha \beta}\left[A_{\alpha}^{(2)}, A_{\beta}^{(1)}\right]=0 .
\end{aligned}
$$

The tensors

$$
\mathrm{P}_{ \pm}^{\alpha \beta}=\frac{1}{2}\left(\gamma^{\alpha \beta} \pm \kappa \epsilon^{\alpha \beta}\right)
$$

For $\kappa= \pm 1$ the tensors $\mathrm{P}_{ \pm}$are orthogonal projectors:

$$
\mathrm{P}_{+}^{\alpha \beta}+\mathrm{P}_{-}^{\alpha \beta}=\gamma^{\alpha \beta}, \quad \mathrm{P}_{ \pm}^{\alpha \delta} \mathrm{P}_{ \pm \delta}^{\beta}=\mathrm{P}_{ \pm}^{\alpha \beta}, \quad \mathrm{P}_{ \pm}^{\alpha \delta} \mathrm{P}_{\mp \delta}^{\beta}=0
$$

The Lagrangian must be invariant under a local fermionic symmetry (κ-symmetry) which should be capable to remove 8 out of 24 fermions

How to exhibit this symmetry?

Local Fermionic Symmetry

- The action of the global symmetry group $\operatorname{OSP}(2,2 \mid 6)$ is realized on a coset element by multiplication from the left
- κ-symmetry transformations can be understood as the right local action of a fermionic element $G=\exp \epsilon \in \operatorname{OSP}(2,2 \mid 6)$ on a coset representative g

$$
g G(\epsilon)=g^{\prime} g_{c}
$$

where $\epsilon \equiv \epsilon(\sigma)$ is a local fermionic parameter. Here g_{c} is a compensating element from $\mathrm{SO}(3,1) \times \mathrm{U}(3)$

Local Fermionic Symmetry

Under the local multiplication from the right the connection A transforms

$$
\delta_{\epsilon} A=-\mathrm{d} \epsilon+[A, \epsilon]
$$

The \mathbb{Z}_{4}-decomposition of this equation gives

$$
\begin{aligned}
\delta_{\epsilon} A^{(1)} & =-\mathrm{d} \epsilon^{(1)}+\left[A^{(0)}, \epsilon^{(1)}\right]+\left[A^{(2)}, \epsilon^{(3)}\right] \\
\delta_{\epsilon} A^{(3)} & =-\mathrm{d} \epsilon^{(3)}+\left[A^{(0)}, \epsilon^{(3)}\right]+\left[A^{(2)}, \epsilon^{(1)}\right] \\
\delta_{\epsilon} A^{(2)} & =\left[A^{(1)}, \epsilon^{(1)}\right]+\left[A^{(3)}, \epsilon^{(3)}\right]
\end{aligned}
$$

where we have assumed that $\epsilon=\epsilon^{(1)}+\epsilon^{(3)}$

Local Fermionic Symmetry

κ-symmetry variation of the Lagrangian
$\delta_{\epsilon} \mathscr{L}=\delta \gamma^{\alpha \beta} \operatorname{str}\left(A_{\alpha}^{(2)} A_{\beta}^{(2)}\right)-4 \operatorname{str}\left(\mathrm{P}_{+}^{\alpha \beta}\left[A_{\beta}^{(1)}, A_{\alpha}^{(2)}\right] \epsilon^{(1)}+\mathrm{P}_{-}^{\alpha \beta}\left[A_{\beta}^{(3)}, A_{\alpha}^{(2)}\right] \epsilon^{(3)}\right)$
Vanishes on-shell due to the Virasoro constraints

$$
\operatorname{str}\left(A_{\alpha}^{(2)} A_{\beta}^{(2)}\right)-\frac{1}{2} \gamma_{\alpha \beta} \gamma^{\rho \delta} \operatorname{str}\left(A_{\rho}^{(2)} A_{\delta}^{(2)}\right)=0
$$

and $\gamma_{\alpha \beta} \delta \gamma^{\alpha \beta}=0$
Take $\kappa= \pm 1$ and for any vector V^{α} introduce the projections $V_{ \pm}^{\alpha}$

$$
V_{ \pm}^{\alpha}=\mathrm{P}_{ \pm}^{\alpha \beta} V_{\beta}
$$

so that the variation of the Lagrangian acquires the form
$\delta_{\epsilon} \mathscr{L}=\delta \gamma^{\alpha \beta} \operatorname{str}\left(A_{\alpha}^{(2)} A_{\beta}^{(2)}\right)-4 \operatorname{str}\left(\left[A_{+}^{(1), \alpha}, A_{\alpha,-}^{(2)}\right] \epsilon^{(1)}+\left[A_{-}^{(3), \alpha}, A_{\alpha,+}^{(2)}\right] \epsilon^{(3)}\right)$

Local Fermionic Symmetry

Some technicalities:

- The condition $\mathrm{P}_{ \pm}^{\alpha \beta} A_{\beta, \mp}=0$ the components $A_{\tau, \pm}$ and $A_{\sigma, \pm}$ are proportional

$$
A_{\tau, \pm}=-\frac{\gamma^{\tau \sigma} \mp \kappa}{\gamma^{\tau \tau}} A_{\sigma, \pm}
$$

As the result, tensorial structures

$$
A_{\alpha,-}^{(2)} \ldots A_{\beta,-}^{(2)} \ldots A_{\delta,-}^{(2)}
$$

do not depend on the order of indices

- To simplify the treatment, we put $\epsilon^{(3)}=0$

Local Fermionic Symmetry

Ansatz for the κ-symmetry variation

$$
\epsilon^{(1)}=A_{\alpha,-}^{(2)} A_{\beta,-}^{(2)} \kappa_{++}^{\alpha \beta}+\kappa_{++}^{\alpha \beta} A_{\alpha,-}^{(2)} A_{\beta,-}^{(2)}+A_{\alpha,-}^{(2)} \kappa_{++}^{\alpha \beta} A_{\beta,-}^{(2)}-\frac{1}{8} \operatorname{str}\left(\Sigma A_{\alpha,-}^{(2)} A_{\beta,-}^{(2)}\right) \kappa_{++}^{\alpha \beta}
$$

Requirements on $\kappa_{++}^{\alpha \beta}$

- $\kappa_{++}^{\alpha \beta} \in \mathfrak{o s p}(2,2 \mid 6)$
- $\kappa_{++}^{\alpha \beta} \in \mathbf{A}^{(1)}$

Thus, generically $\kappa_{++}^{\alpha \beta}$ depends on 12 fermionic variables

Local Fermionic Symmetry

Consider now the commutator

$$
\begin{aligned}
{\left[A_{\alpha,-}^{(2)}, \epsilon^{(1)}\right] } & =A_{\alpha,-}^{(2)} A_{\beta,-}^{(2)} A_{\delta,-}^{(2)} \kappa_{++}^{\beta \delta}+A_{\alpha,-}^{(2)} \kappa_{++}^{\beta \delta} A_{\beta,-}^{(2)} A_{\delta,-}^{(2)}+A_{\alpha,-}^{(2)} A_{\beta,-}^{(2)} \kappa_{++}^{\beta \delta} A_{\delta,-}^{(2)} \\
& -A_{\beta,-}^{(2)} A_{\delta,-}^{(2)} \kappa_{++}^{\beta \delta} A_{\alpha,-}^{(2)}-\kappa_{++}^{\beta \delta} A_{\beta,-}^{(2)} A_{\delta,-}^{(2)} A_{\alpha,--}^{(2)}-A_{\beta,-}^{(2)} \kappa_{++}^{\beta \delta} A_{\delta,-}^{(2)} A_{\alpha,-}^{(2)} \\
& -\frac{1}{8} \operatorname{str}\left(\sum A_{\beta,-}^{(2)} A_{\delta,-}^{(2)}\right) A_{\alpha,-}^{(2)} \kappa_{++}^{\beta \delta}+\frac{1}{8} \operatorname{str}\left(\sum A_{\beta,-}^{(2)} A_{\delta,-}^{(2)}\right) \kappa_{++}^{\beta \delta} A_{\alpha,-}^{(2)}
\end{aligned}
$$

Most of the terms are cancelled out

$$
\left[A_{\alpha,-}^{(2)}, \epsilon^{(1)}\right]=\left[A_{\alpha,-}^{(2)} A_{\beta,-}^{(2)} A_{\delta,-}^{(2)}-\frac{1}{8} \operatorname{str}\left(\Sigma A_{\beta,-}^{(2)} A_{\delta,-}^{(2)}\right) A_{\alpha,-}^{(2)}, \kappa_{++}^{\beta \delta}\right]
$$

Due to the remarkable identity

$$
\left[A_{\alpha,-}^{(2)}, \epsilon^{(1)}\right]=\frac{1}{8} \operatorname{str}\left(A_{\beta,-}^{(2)} A_{\delta,-}^{(2)}\right)\left[\Sigma A_{\alpha,-}^{(2)}, \kappa_{++}^{\beta \delta}\right]
$$

Local Fermionic Symmetry

The κ-symmetry variation of the action

$$
\delta_{\epsilon} \mathscr{L}=\delta \gamma^{\alpha \beta} \operatorname{str}\left(A_{\alpha}^{(2)} A_{\beta}^{(2)}\right)-4 \operatorname{str}\left(\left[A_{+}^{(1), \alpha}, A_{\alpha,-}^{(2)}\right] \epsilon^{(1)}\right)
$$

implies the following transformation law for the metric

$$
\delta \gamma^{\alpha \beta}=\frac{1}{2} \operatorname{str}\left(\Sigma A_{\delta,-}^{(2)}\left[\kappa_{++}^{\alpha \beta}, A_{+}^{(1), \delta}\right]\right)
$$

The condition $\gamma_{\alpha \beta} \delta \gamma^{\alpha \beta}$ is automatically obeyed as

$$
\gamma_{\alpha \beta} \delta \gamma^{\alpha \beta}=\gamma^{\alpha \beta} P_{\alpha \delta}^{+} P_{\beta \eta}^{+} \kappa^{\delta \eta}=0
$$

Full variation of the metric

$$
\delta \gamma^{\alpha \beta}=\frac{1}{2} \operatorname{str}\left(\Sigma A_{\delta,-}^{(2)}\left[\kappa_{++}^{\alpha \beta}, A_{+}^{(1), \delta}\right]\right)+\frac{1}{2} \operatorname{str}\left(\Sigma A_{\delta,+}^{(2)}\left[\varkappa_{--}^{\alpha \beta}, A_{-}^{(3), \delta}\right]\right)
$$

Local Fermionic Symmetry

Rank of κ-symmetry transformations on-shell?

$$
A^{(2)}=\left(\begin{array}{cc}
i x \Gamma^{0} & 0 \\
0 & y T_{6}
\end{array}\right)
$$

The constraint $\operatorname{str}\left(A_{\alpha,-}^{(2)} A_{\beta,-}^{(2)}\right)=0$ then demands that $x= \pm y$ Computing $\epsilon^{(1)}$ one gets

$$
\epsilon^{(1)}=x^{2}\left(\begin{array}{cc}
0 & \varepsilon \\
-\varepsilon^{t} C_{4} & 0
\end{array}\right)
$$

where ε is the following matrix

$$
\varepsilon=\left(\begin{array}{rrrrrr}
0 & 0 & i\left(i k_{13}-k_{16}\right) & i\left(i k_{14}-k_{15}\right) & i k_{14}-k_{15} & i k_{13}-k_{16} \\
0 & 0 & i\left(i k_{23}-k_{26}\right) & i\left(i k_{24}-k_{26}\right) & i k_{24}-k_{25} & i k_{23}-k_{26} \\
0 & 0 & -i\left(-i k_{33}-k_{36}\right) & -i\left(-i k_{34}-k_{35}\right) & -i k_{34}-k_{35} & -i k_{33}-k_{36} \\
0 & 0 & -i\left(-i k_{43}-k_{46}\right) & -i\left(-i k_{44}-k_{45}\right) & -i k_{44}-k_{45} & -i k_{43}-k_{46}
\end{array}\right)
$$

Integrability: The Lax Connection

No difference in construction of the Lagrangian $\operatorname{AdS}_{5} \times \mathrm{S}^{5}$, the Lax connection found by Bena, Polchinski and Roiban is applicable to our model as well

$$
L_{\alpha}=\ell_{0} A_{\alpha}^{(0)}+\ell_{1} A_{\alpha}^{(2)}+\ell_{2} \gamma_{\alpha \beta} \epsilon^{\beta \rho} A_{\rho}^{(2)}+\ell_{3} A_{\alpha}^{(1)}+\ell_{4} A_{\alpha}^{(3)}
$$

- L_{α} is flat due to e.o.m and this determines all ℓ_{i} in terms of one parameter z
- L_{α} is flat provided $\kappa= \pm 1$
- κ-symmetry variation of L_{α} is a gauge transformation on-shell
- $L_{\alpha}(z)$ is used to build infinite sets of integrals of motion

Plane-wave Limit

Let z_{i} be homogenious coordinates on $\mathbb{C P}^{3}$.
Parametrize

$$
z_{4}=e^{-i \phi / 2}, \quad z_{3}=\left(1-x_{4}\right) e^{i \phi / 2}, \quad z_{1}=\frac{1}{\sqrt{2}} y_{1}, \quad z_{2}=\frac{1}{\sqrt{2}} y_{2}
$$

ϕ is a parameter along the geodesics and the complex y_{1}, y_{2} and the real x_{4} denote the five physical fluctuations in $\mathbb{C P}^{3}$

The $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$ background metric admits the following expansion
$d s_{\mathrm{AdS}_{4} \times \mathbb{C P}^{3}}^{2}=-d t^{2}\left(1+x_{i}^{2}\right)+d x_{i}^{2}+d \phi^{2}\left(1-x_{4}^{2}-\frac{1}{4} \bar{y}_{r} y_{r}\right)+d x_{4}^{2}+d \bar{y}_{r} d y_{r}+\cdots$

Plugging in the point-like string solution with $t=\tau, \phi=\tau$ in the string Lagrangian one gets four fields of mass $1 / 2$ and four fields of mass 1.The field x_{4} from $\mathbb{C P}^{3}$ joins three fields from AdS_{4}.

Plane-wave Limit

The bosonic action around particle trajectory $t=\tau, \phi=\tau$ is

$$
S_{B}^{(2)}=-\frac{R^{2}}{4 \pi \alpha^{\prime}} \int \mathrm{d} \sigma \mathrm{~d} \tau\left(\partial^{\alpha} x_{k} \partial_{\alpha} x_{k}-x_{k}^{2}+\partial^{\alpha} \bar{y}_{r} \partial_{\alpha} y_{r}-\frac{1}{4} \bar{y}_{r} y_{r}\right)
$$

Develop now the whole quadratic action (including fermions) starting from the coset representative

$$
g=e^{\chi} g_{B}
$$

Gauge-fixing κ-symmetry we find that
the sum of the quadratic bosonic and fermionic actions coincides with the light-cone Green-Schwarz action for Type IIA superstrings on the pp-wave background with 24 supersymmetries!

Conclusions

- Green-Schwarz superstring on $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$ with κ-symmetry partially fixed is the coset sigma model

$$
\frac{\operatorname{OSP}(2,2 \mid 6)}{\mathrm{SO}(3,1) \times \mathrm{U}(3)}
$$

- The coset sigma model has κ-symmetry of rank 8
- The coset sigma model is classically integrable
- Is it a quantum integrable model?
- What is the light-cone S-matrix?

