Investigations of the long-term stability of a GEM-TPC

Oleksiy Fedorchuk FLC TPC group Hamburg, Germany

Time Projection Chamber and GEMs

GEM holes

Oleksiy Fedorchuk | GEM-TPC investigations | 2/23/15 | Page 2

Problem definition

- GEM is a main signal amplification part that is kept under HV.
- Due to HV environment from time to time we observe discharges between two plates.
- Some of them break our GEMs
- > WHY?
- > HOW TO AVOID THIS?

Usual trips

Double trip

- Here we can well observe the two trip at the same time
- The common electrode has some problems with readout
- We also can see the trip killing time = 0.3s. That is equal to HV supply settings.

Experimental setup: Support structure

Overlay of about 100 trips

- > We can see the groups of trips at the "weak" places
- Some trips occurs in the same very place

Double and triple trips have been observed

DESY

Photo of the fatal trip

Bottom left sector (3) has been broken

The discharges appeared sequentially: in sector 4 (top), than sector 3 (bottom). This received from fact that discharges appears in the neighborhoods frames of camera (30 rps = 33 ms)

Intensity distribution from WebCam

Oleksiy Fedorchuk | GEM-TPC investigations | 2/23/15 | Page 10

SPICE simulatuins

Voltage on the spectator capacitor after the trip

Single trip

Green – tripped sector

Blue – sector spectator

Red - GND

N sectors	Vm, V	Q trip, Qsec*%	∆Q trip, (Q trip-Q trip₁)*%
1	-300	50%	0
2	-400	66%	33%
3	-450	75%	50%
4	-480	80%	60%

Summary

- Double and triple trips has been discovered.
- One sector breaking has been observed. The "killer" is the sequential double trip.

- The trip charge is increasing with increasing sector number.
- We can observe fast potential changing on spectator sectors.
- We may consider the rescue system with additional power supply based on avalanche transistors.

Back UP

Using brightness distribution

After applying a threshold

Using brightness distribution

Trip brightness spikes response for trip light

Double trip

No comments

Double trips have been observed

Triple trips have been observed

Trip time occur dependence

1 Bin = 20 minutes

Possible rescue system

Oleksiy Fedorchuk | GEM-TPC investigations | 2/23/15 | Page 22

Bright spots

Other imperfections

Analytical proving of the empirical formula

For parallel plate: $\phi(z) = -E \cdot (z - z_0) = \frac{-\sigma}{2 \cdot \varepsilon} \cdot (z - z_0) = C(z) \cdot \sigma$ $We \ choose: \phi_{nt} = 0; \sigma_{nt} = 0$ $\phi_{nb} = C \cdot -\sigma_{nb} = -600$ After trip:

$$\phi_{0t} = \phi_{0b} = \phi_{nb} \rightarrow -\sigma_{trip} = C \cdot (\sigma_{0b} - \sigma_{trip} - (n-1)\sigma_{friend}) = C \cdot (-\sigma_{bt} + \sigma_{friend})$$

Analytical proving of the empirical formula

$$\phi_{0t} = \phi_{0b} = \phi_{nb} \rightarrow -\sigma_{trip} = C \cdot (\sigma_{0b} - \sigma_{trip} - (n-1)\sigma_{friend}) = C \cdot (-\sigma_{it} + \sigma_{friend})$$

$$\sigma_{trip} = \frac{n}{n+1} \cdot \sigma_{ib} \rightarrow q_{trip} = \frac{n}{n+1} \cdot q_{ib} \rightarrow V_{splash} = \frac{n}{n+1} \cdot V_0$$

N sectors	Vm, V	Q trip, Qsec*%	ΔQ trip, (Q trip-Q trip ₁)*%
1	-300	50%	0
2	-400	66%	33%
3	-450	75%	50%
4	-480	80%	60%

Number of sectors move the voltage of equilibrium. For this GND need to spend more charge during a trip to move it to the lower voltage.

