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Bayes theorem

A quick reminder

Conditional probability P(A|B): The probability of A to occur under the
condition that B has occured.
Bayes theorem:

P(A|B) =
P(B|A) · P(A)

P(B)

The following useful identity follows from the three Kolmogorov axioms:

P(B) =
∑

i

P(B|Ai) · Ai

for a binomial experiment this becomes:

= P(B|A) · P(A) + P(B|!A) · P(!A)

prior probabilitylikelihood

posterior probability
evidence
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Bayes statistics

Example (Barlow): Subjective probability
Choose a coin from your pocket and toss it three times: It
comes down head each time. The probability for this to happen
is (1

2)
3 = 1

8 . But could the coin be a double-headed phony
(biased coin)?

P(phony|3 heads) =
P(3 heads|phony)

P(3 heads)
· P(phony)

=
1 · 10−6

0.125 · (1− 10−6) + 1 · 10−6

= 8 · 10−6

Our subjective prior: One of a million randomly choosen coins is a phony.
And P(3 heads) = P(3 heads|fair) · P(fair) + P(3 heads|phony) · P(phony).
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Bayes statistics

Honest Harry

„What about this little baby?
Seventeen previous owners, twice
round the clock, drinks like a fish,

goes like a tortoise...”

http://www.cartoonstock.com

Example (Barlow): Subjective probability
Now you are on the Reeperbahn with Honest Harry,
the used car salesman, who suggests to toss a coin
to see who pays for the drinks.

Again, it comes down head three times.

Now the prior probability that this coin is a phony is
not 10−6 but larger, lets say 5%.
Is the coin a phony?

P(phony|3 heads) =
1 · 0.05

0.125 · (0.95) + 1 · 0.05
= 30%
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Confidence levels

http://buildingabrandonline.com/Beinspired/thrive-with-unstoppable-confidence-part-3/
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Confidence level intervals
Given a precisely known true value µ of a certain property (e.g.
the weight of cereal packets), we can ask:

What is the weight-range into which a certain amount (e.g.
90%) of measurements xi will fall?
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90% central confidence interval for a Gaussian

measurement m

0
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90% CL

measurement m
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 = 0.05
2

1 - CL  = 0.05
2

1 - CL

90% CL

X− X+

The value of the measurement m lies in the interval X− . . .X+ in „CL”% of the time.

⇐⇒ The statement „m will lie in the interval X− . . .X+” has CL confidence.
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Central confidence intervals for a Gaussian distributions:

P(X− ≥ x ≥ X+) =
∫ X+

X− P(x)dx = CL

x: measurement, X± limits of the confidence interval.

measurement m
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 = 0.05
2

1 - CL  = 0.05
2

1 - CL

90% CL

X− X+

Common values:

1σ =̂ 68.27% 1.6449σ =̂ 90%
2σ =̂ 95.45% 1.9600σ =̂ 95%
3σ =̂ 99.73% 2.5758σ =̂ 99%
5σ =̂ 99.99994%
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Single sided confidence intervals for a Gaussian distributions:

P(x ≥ X+) =
∫ X+

−∞ P(x)dx = CLupper

P(X− ≥ x) =
∫∞

X−
P(x)dx = CLlower

x: measurement, X± single sided limits of the confidence interval.

measurement m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
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90% CL single sided

measurement m

0
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0.2
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0.3
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0.4

0.45

0.5

1 - CL = 0.1

90% CL single sided

X−

Common values:

1σ =̂ 84.13% 1.2816σ =̂ 90%
2σ =̂ 97.72% 1.6449σ =̂ 95%
3σ =̂ 99.87% 2.3263σ =̂ 99%
5σ =̂ 99.99997%
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Example single sided confidence interval: Journey to work
An employee needs to be at work at 8:00 o’clock sharp. The journey takes
30 minutes on average, with a Gaussian uncertainty of σ = 10 minutes due
to varying traffic.

When must he leave home to be late only once a year (∼ 0.5%)?

Single sided limit: (2.3σ=̂99.0%, 3σ=̂99.87%) −→ 99.5% ≈̂ 2.5σ
He has to leave at t ≈ 8:00 - 0:30 - 0:10·2.5 =7:05 o’clock!

x
7 7.2 7.4 7.6 7.8 8 8.2 8.4

f(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 = 1 - CL = 0.005α

 = t + 0.5 hµ
 = 1/6 hσ

∫ ∞
Xup

1√
2πσ

e−
(x−µ)2

2σ2 dx = 1− CL

mean µ = t + 30 minutes

limit Xup = 8 : 00 o’clock

width σ = 10 minutes
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Confidence level intervals
With a true value µ of a certain property (e.g. the weight of
cereal packets) with a width σ, we can ask:

Given one measurement x , what could we say about the
true value µ?

Simply turning it around, to say that µ lies in the interval
x −σ . . . x +σ is naive, because it contains hidden assumptions.

=⇒ Confidence belt to translate a measurement into a
confidence interval.
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Confidence Belt

http://www.inewidea.com ($90)
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Confidence Level Belt

Neyman construction for Confidence Level intervals
Given a particular true value µ

, there is a probability density function P(µ, σ)

that defines the most probable measurement x , and the interval
x − σ . . . x + σ into which the measurements will fall with a given CL.

measurement

 t
ru

e 
va

lu
e

0

0.2

0.4

0.6

0.8

1

µ

1 For a different µ there are
different measurements x and
limits x ± σ.

2 The measurement limits x − σ
and x + σ can be considered as
functions from the true value µ.

3 The functions X−(µ) and X+(µ)
are the confidence belt.
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Confidence Level Belt

Neyman construction for Confidence Level intervals
Given a particular true value µ , there is a probability density function P(µ, σ)

that defines the most probable measurement x , and the interval
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Given a measurement x a confidence
interval for the true value µ− . . . µ+ can be
constructed from the confidence belt.

The confidence belt is constructed horizontally
using the known probability density for all
possible true values µ. Having a
measurement x , it is read vertically.

The µ− . . . µ+ enclose with CL probability the
true value µ.
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Example: Confidence Belt for a Gaussian

measurement

 t
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e 
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e

0

0.2

0.4

0.6

0.8

1

x

-X

+X
+µ

-µ

For Gaussian distributions the
conversion from the horizontal
measurement confidence interval
x− . . . x+ to the vertical true
confidence interval µ− . . . µ+ is simple:
The confidence belt X−, X+ becomes
two straight lines with unit gradient.

x± = µ± n · σ when constructed

horizontally

µ± = x ± n · σ when read vertically

With n = 1 for CL = 68%, etc...
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Binomial Confidence Intervals

„Coin-flip” experiments
Binomial experiments have only two possible outcomes. While
the true value µ is continous the observed value is discrete.
The confidence integrals become summations.
For m successes in n binomial tries, the limits p− and p+ of the
confidence interval are found by:

m−1∑
r=0

B(µ,p−,n) ≤
CL
2

n∑
r=m+1

B(µ,p+,n) ≤
CL
2

where

B(µ,p,n) =
(

n
k

)
pµ(1− p)n−µ

is the binomial distribution.
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Poisson Confidence Intervals

„Coin-flip” experiments
A Poisson-distribution is a approximation for a binomial for large
n and small probabilities p, i.e. n→∞ and p → 0.

P(k , λ) =
λk

k !
e−λ

where k is the number of successes per interval, and λ the true
expectation.
The limits of the confidence interval become:

k−1∑
r=0

P(r , λ−) ≤
CL
2

∞∑
r=n+1

P(r , λ+) ≤
CL
2

(lower) (upper)
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Poisson Confidence Intervals

Example: Proton decay
In Super-Kamiokande with 50 000 tons of water, less than s proton-decay
candidate events per year are observed. What is the 95% CL interval for
proton-decays and the proton half-life, assuming no background events and
s = 1 found event per year?

Number of protons in 50 ktons of
water: N = 1.65 · 1034

95% CL interval, e.g. for 1 event:
CLdn = 0.05, CLup = 4.74.

Prob. one decay/year:
P =

CLdn
N = 3.03 · 10−36. . .2.87 · 10−34

and mean lifetime interval:
3.48 · 1033 < τ = 1

P < 3.3 · 1035 years.

Limit determination I Christian Autermann 25/ 44
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Poisson Confidence Intervals

Example: Proton decay
In Super-Kamiokande with 50 000 tons of water, less than s proton-decay
candidate events per year are observed. What is the 95% CL interval for
proton-decays and the proton half-life, assuming no background events and
s = 1 found event per year?

Poisson limits:

Lower Upper
n 90% 95% 99% 90% 95% 99%
0 − − − 2.30 3.00 4.61
1 0.11 0.05 0.01 3.89 4.74 6.64
2 0.53 0.36 0.15 5.32 6.30 8.41
3 1.10 0.82 0.44 6.68 7.75 10.05
4 1.74 1.37 0.82 7.99 9.15 11.60
5 2.43 1.97 1.28 9.27 10.51 13.11
6 3.15 2.61 1.79 10.53 11.84 14.57
7 3.89 3.29 2.33 11.77 13.15 16.00
8 4.66 3.98 2.91 12.99 14.43 17.40
9 5.43 4.70 3.51 14.21 15.71 18.78

10 6.22 5.43 4.13 15.41 16.96 20.14

Number of protons in 50 ktons of
water: N = 1.65 · 1034

95% CL interval, e.g. for 1 event:
CLdn = 0.05, CLup = 4.74.

Prob. one decay/year:
P =

CLdn
N = 3.03 · 10−36. . .2.87 · 10−34

and mean lifetime interval:
3.48 · 1033 < τ = 1

P < 3.3 · 1035 years.
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Constrained Confidence Intervals

Constrained Gaussian Distributions
Given a measurement x with resolution σ we want to find the
limits of the confidence intervals of the true underlying variable
µ, which we know must be within a specific interval.

Example: Measuring a
mass x , which we know
must be positive.

Some measurements
lead to a negative upper
mass limit, which is
absurd.
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=2σwidth 
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Constrained Confidence Intervals

Constrained Gaussian Distributions
Bayes statistics allows to incorporate our prior knowledge about
the true value µ.

Example: Mass measurement, µ constrained to positive values

Prior: P(µ) = 1 if µ ≥ 0, P(µ) = 0 else.

P(µup|x) =
P(x |µ)
P(x)

· P(µ)

=

∫ µup
−∞Gauss(σ, x − x ′)dx ′∫∞
0 Gauss(σ, x − x ′)dx ′

×
{

1 for x > 0
0 else = 1− CL

2

⇒ µup @ CL confidence level, (µlower equivalently) by solving the above
equation.
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Constrained Confidence Intervals

Frequentists and Bayes confidence belt
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68% confidence belt for
Bayes using a flat prior for
P(µ) (constraint to positive
values), and a „normal”
Frequentists approach.
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Constrained Confidence Intervals

Upper limits for many
pseudo-experiments
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For a large number of pseudo
experiments the measured
mass x, and the upper limits
obtained from Bayes with flat
prior and the Frequentists
approach are shown in the
plot.

While the Frequentists upper
limit is a shifted Gauss
truncated at 0, the Bayes
upper limit is here constrained
to meaningful values.
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Coverage: Poisson

Poisson: discrete distribution

The coverage probability of a confidence interval is the
proportion of the time that the interval contains the true value
of interest
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Coverage

Single-sided 90% C.L. limit on Poisson mean

PDF reader with Java (e.g. Adobe Acrobat) necessary for animation
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Conclusions Confidence Intervals

Recap Confidence Intervals
Frequentistic limits can have unphysical values, though
they are strictly correct
95% CL limits are not true 1 out of 20 times, by definition
The coverage of a frequentistic limit might differ from the
stated confidence level. Frequentistic limit can be
conservative.

Baysian limits can avoid these problems: Coverage is
correct and the limits can be constraint to physical
meaningful values
Feldman-Cousins suggested a method to fix Frequentistic
limits (Phys. Rev. D 57 (1998) 3873)
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Task 1: Thermometers

Task 1: Thermometers

A company produces clinical thermometers

From testing a sample of thermometers it is observed that the results from
different thermometers spread approximately according to a normal distribution
with a sigma of 0.1 degree celsius. Estimate how many of 10000 produced
thermometers will show a temperature which is:

more than 0.3 degrees wrong (Note: can be either too low or two high)?
more than +0.3 degrees wrong?
more than 0.4 degrees wrong?
more than +0.4 degrees wrong?

If less than 5% of the thermometers should be wrong by more than 0.1 degree -
than to which precision (sigma) should the thermometers be calibrated?
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Solution to task 1: Thermometers

Solution to task 1: Thermometers
more than 0.3 degrees: corresponds to 3σ. The Two-sided
CL for 3σ is 2.7 · 10−3. Therefore, 27 out of 10000
thermometers are expected to deviate this much or more.

more than +0.3 degrees: One-sided confidence interval,
which is half as large, therefore 13.5 thermometers are
expected to deviate by +0.3 degrees
more than 0.4 degrees: The CL is 6.3 · 10−6,
corresponding to 0.63 thermometers.
more than +0.4 degrees: One-sided CLs, i.e. 0.32
thermometers

Limit determination I Christian Autermann 36/ 44



Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Solution to task 1: Thermometers

Solution to task 1: Thermometers
more than 0.3 degrees: corresponds to 3σ. The Two-sided
CL for 3σ is 2.7 · 10−3. Therefore, 27 out of 10000
thermometers are expected to deviate this much or more.
more than +0.3 degrees: One-sided confidence interval,
which is half as large, therefore 13.5 thermometers are
expected to deviate by +0.3 degrees

more than 0.4 degrees: The CL is 6.3 · 10−6,
corresponding to 0.63 thermometers.
more than +0.4 degrees: One-sided CLs, i.e. 0.32
thermometers

Limit determination I Christian Autermann 36/ 44



Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Solution to task 1: Thermometers

Solution to task 1: Thermometers
more than 0.3 degrees: corresponds to 3σ. The Two-sided
CL for 3σ is 2.7 · 10−3. Therefore, 27 out of 10000
thermometers are expected to deviate this much or more.
more than +0.3 degrees: One-sided confidence interval,
which is half as large, therefore 13.5 thermometers are
expected to deviate by +0.3 degrees
more than 0.4 degrees: The CL is 6.3 · 10−6,
corresponding to 0.63 thermometers.

more than +0.4 degrees: One-sided CLs, i.e. 0.32
thermometers

Limit determination I Christian Autermann 36/ 44



Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Solution to task 1: Thermometers

Solution to task 1: Thermometers
more than 0.3 degrees: corresponds to 3σ. The Two-sided
CL for 3σ is 2.7 · 10−3. Therefore, 27 out of 10000
thermometers are expected to deviate this much or more.
more than +0.3 degrees: One-sided confidence interval,
which is half as large, therefore 13.5 thermometers are
expected to deviate by +0.3 degrees
more than 0.4 degrees: The CL is 6.3 · 10−6,
corresponding to 0.63 thermometers.
more than +0.4 degrees: One-sided CLs, i.e. 0.32
thermometers

Limit determination I Christian Autermann 36/ 44



Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Solution to task 1: Thermometers

Solution to task 1: Thermometers
5% corresponds to (approximately) 2σ, therefore

0.1 degree =̂ 2σ

The produced thermometers should therefore follow a
nomal distribution with width σ ≈ 0.05 degrees.
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Task 2: Upper limit

limit for signal + small background (Frequentist approach)

Most general, the data consists of signal and background such that µ = µsig + µbkg .
Here µsig and µbkg are the Poisson parameters for signal and background, respectively.
Determine 90% CL upper limits of µsig for the following cases with a given Nobs and
known µbkg

µbkg = 0, Nobs = 2

µbkg = 1, Nobs = 2

µbkg = 3, Nobs = 0

Hint: The relevant formula is p(µ,Nobs) =
∑

i≤Nobs

e−µ µ
i

i! = 10%, where µ has to be

replaced with µsig + µbkg . See the figure for of the confidence intervals for different µsig
and Nobs to solve subexercise a)
Note: p(µ,Nobs = 0) = e−µ.

Limit determination I Christian Autermann 38/ 44



Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Solution to task 2: Upper limit

Solution to task 2: Upper limit
1 Consider the bin with Nobs = 2. The values are

p(µ = 5,2) = 0.12 and
p(µ = 6,2) = 0.06.
The 90% CL limit is therefore at µsig ≈ 5.3.

2 Now µbkg is 1, therefore µsig = 5.3− 1 = 4.3.

3 The probability is p = e−(µsig+3) = 0.1. The signal strength
µsig ougth to be negative, therefore µsig = 0.
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Appendix 1 - One sided Gaussian confidence levels
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Appendix 2 - Two sided Gaussian confidence levels
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Appendix 3 - Poisson confidence levels
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Optional: Leukemia cases close to nuclear power plants

Researchers from Mainz (Maria Blettner et al) observed that in a 5 km surrounding of
nuclear power plants 37 children contracted leukemia (in the years 1980-2003), while
the statistical average in the population is 17. Determine the probability for a statistical
fluctuation from 17 to ≥37.

Use the exact poisson probabilities shown in the figure

Approximate the distribution by a Gaussian with µ = 17 and σ =
√

17. Use the
CL curves for a Gaussian to determine the fluctuation probability.
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Optional: Solution Leukemia

Leukemia cases close to nuclear power plants - solution

Simply reading off the figure: p = 2 · 10−5

Deviation in number of σ: (37-17)/
√

17 = 4.85→ CL = 6 · 10−7

The difference between both estimates is due to the fact that the Poisson distribution
has more tails towards larger numbers compared to the Gaussian. However, in both
cases, the fluctuation probability is very low such than one can conclude there is a
significant increase in the cancer risk close to nuclear power plants.

Further information:

The results are vehemently disputed in other publications
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