
Hypothesis Testing Frequentist

Hypothesis Testing - Frequentist

Compare two hypotheses to see which one better explains the data.
Or, alternatively, what is the best way to separate events into two classes,
those originating from each of two hypotheses.
The two hypotheses are traditionally called:

H0 : the null hypothesis, and
H1 : the alternative hypothesis.

As usual, we know P(data|H0) and P(data|H1).

If W is the space of all possible data, we must find a
Critical Region w ∈W (in which we reject H0) such that

P(data∈w |H0) = α (chosen to be small),
and at the same time,

P(data ∈ (W−w) |H1) = β is made as small as possible.
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Hypothesis Testing Frequentist

Simple and Composite Hypotheses

Simple Hypotheses

When the hypotheses H0 and H1 are completely specified (with no free
parameters), they are called simple hypotheses.

The theory of hypothesis testing for simple hypotheses is well developed,
holds for large or small samples.

Composite Hypotheses

When a hypothesis contains one or more free parameters, it is a composite
hypothesis, for which there is only an asymptotic theory.
Unfortunately, real problems usually involve composite hypotheses.

Fortunately, we can get exact answers for small samples using Monte Carlo.
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Hypothesis Testing Frequentist - Simple Hypotheses

Errors of first and second kinds

The level of significance α, (size of test) is defined as the probability of
X falling in w (rejecting H0) when H0 is true: P(X ∈w |H0) = α .

H0 TRUE H1 TRUE

Acceptance Contamination
X 6∈ w ACCEPT good Error of the

H0 second kind
Prob = 1− α Prob = β

Loss Rejection
X ∈ w REJECT Error of the good
(critical H0 first kind
region) Prob = α Prob = 1− β
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Hypothesis Testing Frequentist - Simple Hypotheses

Errors of first and second kinds
The usefulness of a test depends on its ability to discriminate against the
alternative hypothesis H1. The measure of this usefulness is the power of
the test, defined as the probability 1− β of X falling into the critical
region if H1 is true:

P(X ∈w |H1) = 1− β . (1)

In other words, β is the probability that X will fall in the acceptance
region for H0 if H1 is true:

P(X ∈W−w |H1) = β .

In practice, the determination of a multidimensional critical region may be
difficult, so one often chooses a single test statistic t(X ) instead. Then
the critical region becomes wt and we have:

P(t∈wt |H0) = α
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Hypothesis Testing Frequentist - Simple Hypotheses

Example: Separation of two classes of events

Problem: Distinguish elastic proton scattering events

pp → pp (the hypothesis under test,H0)

from inelastic scattering events

pp → ppπ◦ (the alternative hypothesis,H1) ,

in an experimental set-up which measures the proton trajectories, but
where the π0 cannot be detected directly. The obvious choice for the test
statistic is the missing mass (the total rest energy of all unseen particles)
for the event.

Knowing the expected distributions of missing mass for each of the two
hypotheses, we can obtain the curves shown in the next slide which allow
us to choose a critical region for missing mass M:
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Hypothesis Testing Frequentist - Simple Hypotheses

Example: Separation of two classes of events
P (M)

0

0

Mπ0

Mπ0

β

α

Mc

Mc

M1

M1

M

M

P (M |H0)

P (M |H1)

Resolution functions for the missing mass M under the hypotheses H0 and H1, with
critical region M > Mc .
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Hypothesis Testing Frequentist - Simple Hypotheses

Comparison of Tests: Power functions

If the two hypotheses under test can be expressed as two values of some
parameter θ:

H0 : θ = θ0
H1 : θ = θ1

and the power of the test is p(θ1) = P(X ∈w |θ1) = 1− β .

It is of interest to consider p(θ), as a function of θ1 = θ.

[Here H1 is still considered a simple hypothesis,
with θ fixed, but at different values.]

p(θ) is called a power function.
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Hypothesis Testing Frequentist - Simple Hypotheses

Comparison of Tests: Most powerful

B

A

C
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p(θ)

θ′

{βB(θ1)

θ1θ′ θθ0

Power functions of tests A, B, and C at significance level α.

Of these tests, B is the best for θ > θ′. For smaller values of θ, C is better.

B
A

C

U

0
α

1

power

p(θ)

θθ0
Power functions of four tests, one of which (U) is Uniformly Most Powerful.
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Hypothesis Testing Frequentist - Simple Hypotheses

Tests of Hypotheses: Consistency
A test is said to be consistent if the power tends to unity as the number of
observations tends to infinity:

lim
N→∞

P(X ∈ wα|H1) = 1 ,

where X is the set of N observations, and wα is the critical region, of size
α, under H0.

0
α

1

power

p(θ)

θθ0

N

Power function for a consistent test as a function of N. As N increases, it tends to a
step function.
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Hypothesis Testing Frequentist - Simple Hypotheses

Tests of Hypotheses: Bias
Consider the power curve which does not take on its minimum at θ = θ0.
In this case, the probability of accepting H0 : θ = θ0 is greater when
θ = θ1 than when θ = θ0, or 1−β < α
That is, we are more likely to accept the null hypothesis when it is false
than when it is true. Such a test is called a biased test.

A
B

0
α

1

power

p(θ)

θθ2θ0 θ1

Power functions for biased (B) and unbiased (A) tests.
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Hypothesis Testing Frequentist - Simple Hypotheses

Choice of Tests

For a given test, one must still choose a value of α or β.
It is instructive to look at different tests in the α− β plane.

0
0

1

1

A

A

B

B

C

N-P

α1 α

β

Unbiased tests must lie
below the dotted line.
N-P is the most pow-
erful test.
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Hypothesis Testing Frequentist - Simple Hypotheses

The Neyman-Pearson Test
Of all tests for H0 against H1 with significance α, the most powerful test is
that with the best critical region in X -space, that is, the region with the
smallest value of β.
Suppose that the random variable X = (X1, . . . ,XN) has p.d.f. fN(X|θ0)
under θ0, and fN(X|θ1) under θ1.
From the definitions of α and the power (1− β), we have∫

wα

fN(X|θ0)dX = α

1− β =

∫
wα

fN(X|θ1)dX .

1− β =

∫
wα

fN(X|θ1)

fN(X|θ0)
fN(X|θ0)dX

= Ewα

(
fN(X|θ1)

fN(X|θ0)

∣∣∣∣ θ=θ0

)
.
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Hypothesis Testing Frequentist - Simple Hypotheses

The Neyman-Pearson Test

1− β = Ewα

(
fN(X|θ1)

fN(X|θ0)

∣∣∣∣
θ=θ0

)
Clearly this will be maximal if and only if wα is that fraction α of X -space
containing the largest values of fN(X|θ1)/fN(X|θ0). Thus the best critical
region wα consists of points satisfying

`N(X, θ0, θ1) ≡ fN(X|θ1)

fN(X|θ0)
≥ cα ,

The procedure leads to the criteria:

if `N(X, θ0, θ1) > cα choose H1 : fN(X|θ1)
if `N(X, θ0, θ1) ≤ cα choose H0 : fN(X|θ0) .

This is the Neyman–Pearson test. The test statistic `N is essentially the
ratio of the likelihoods for the two hypotheses, and this ratio must be
calculable at all points X of the observable space. The two hypotheses H0

and H1 must therefore be completely specified simple hypotheses, and
then this gives the best test.
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Hypothesis Testing Frequentist - Composite Hypotheses

Composite Hypotheses

The theory above applies only to simple hypotheses.

Unfortunately, we often need to test hypotheses which contain unknown
free parameters, composite hypotheses, such as:

H0 : θ1 = a, θ2 = b
H1 : θ1 6= a, θ2 6= b

or

H0 : θ1 = a, θ2 unspecified
H1 : θ1 = b, θ2 unspecified
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Hypothesis Testing Frequentist - Composite Hypotheses

Existence of Optimal Tests

For composite hypotheses there is in general no UMP test.

However, when the pdf is of the exponential form, there is a result similar
to Darmois’ Theorem for the existence of sufficient statistics.

If X1 · · ·XN are independent, identically distributed random variables with
a p.d.f. of the form

F (X )G (θ) exp[A(X )B(θ)] ,

where B(θ) is strictly monotonic, then there exists a UMP test of

H0 : θ = θ0 against H1 : θ > θ0.
(Note that this test is only one-sided)
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Hypothesis Testing Frequentist - Composite Hypotheses

One-sided and two-sided tests
When the test involves the value of one parameter θ, we can have a
one-sided test of the form H0 : θ = θ0 H1 : θ > θ0
or a two-sided test of the form H0 : θ = θ0 H1 : θ 6= θ0

For two-sided tests, no UMP test generally exists as can be seen from the
power curves shown below:

I Test 1+ is UMP for θ > θ0
I Test 1− is UMP for θ < θ0
I Test 2 is the (two-sided) sum of tests 1+ and 1−.

At the same significance level α, Test 2 is clearly less powerful than Test
1+ on one side and Test 1− on the other.

1+1−

2

0

α

1

p(θ)

θθ0
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Hypothesis Testing Frequentist - Composite Hypotheses

Maximizing Local Power

If no UMP test exists, an important alternative is to look for a test which is
most powerful in the neighbourhood of the null hypothesis. Then we have

H0 : θ = θ0 H1 : θ = θ0 + ∆, (∆ small)

Expanding the log-likelihood we have

ln L(X, θ1) = ln L(X, θ0) + ∆
∂ ln L

∂θ

∣∣∣∣
θ=θ0

+ · · · .

If we now apply the Neyman–Pearson lemma to H0 and H1, the test is of
the form:

ln L(X, θ1)− ln L(X, θ0) >< cα .

or
∂ ln L

∂θ

∣∣∣∣
θ=θ0

>< kα .
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Hypothesis Testing Frequentist - Composite Hypotheses

maximizing local power (cont.)

If the observations are independent and identically distributed, then

E

(
∂ ln L

∂θ

∣∣∣∣
θ=θ0

)
= 0

E

[(
∂ ln L

∂θ

)2
]

= +NI ,

where N is the number of observations and I is the information matrix.
Under suitable conditions ∂ ln L/∂θ is approximately Normal. Hence a
locally most powerful test is approximately given by

∂ ln L

∂θ

∣∣∣∣
θ=θ0

>< λα
√
NI .
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Hypothesis Testing Frequentist - Composite Hypotheses

Likelihood Ratio Test

This is the extension of the Neyman-Pearson Test to composite
hypotheses. Unfortunately, its properties are known only asymptotically.

Let the observations X have a distribution f (X|θ), depending on
parameters, θ = (θ1, θ2, . . .). Then the likelihood function is

L(X|θ) =
N∏
i=1

f (Xi |θ) .

In general, let the total θ-space be denoted θ, and let ν be some subspace
of θ, then any test of parametric hypotheses (of the same family) can be
stated as

H0 : θ ∈ ν

H1 : θ ∈ θ−ν
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Hypothesis Testing Frequentist - Composite Hypotheses

Likelihood Ratio Test (cont.)

We can then define the maximum likelihood ratio,
a test statistic for H0:

λ =

max
θ∈ν

L(X|θ)

max
θ∈θ

L(X|θ)
.

If H0 and H1 were simple hypotheses, λ would reduce to the
Neyman-Pearson test statistic, giving the UMP test. For composite
hypotheses, we can say only that λ is always a function of the sufficient
statistic for the problem, and produces workable tests with good
properties, at least for large sets of observations.
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Hypothesis Testing Frequentist - Composite Hypotheses

Likelihood Ratio Test (cont.)

The maximum likelihood ratio is then the ratio between
the value of L(X|θ), maximized with respect to θj , j = 1, . . . , s,

while holding fixed θi = θio , i = 1, . . . , r ,
and the value of L(X|θ), maximized with respect to all the parameters.
With this notation the test statistic becomes

λ =

max
θs

L(X|θr0,θs)

max′
θr ,θs

L(X|θr ,θs)

or λ =
L(X|θr0,θ

′′
s )

L(X|θ′r ,θ′s)
. ←−

(
correct your book

p. 271, Eq(10.11)

)
where θ′′s is the value of θs at the maximum in the restricted θ region and
θ′r ,θ

′
s are the values of θr ,θs at the maximum in the full θ region.
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Hypothesis Testing Frequentist - Composite Hypotheses

Likelihood Ratio Test (cont.)

The importance of the maximum likelihood ratio comes from the fact that
asymptotically:

if H0 imposes r constraints on the s + r parameters in H0 and H1, then

−2 lnλ is distributed as χ2(r) under H0

This means we can read off the confidence level α from a table of χ2.

However, the bad news is that this is only true asymptotically,
and there is no good way to know how good the approximation is
except to do a Monte Carlo calculation.
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Hypothesis Testing Frequentist - Composite Hypotheses

Likelihood Ratio Test - Example
Problem: Find the ratio X of two complex decay amplitudes:

X =
A(reaction 1)

A(reaction 2)
.

In the general case, X may be any complex number, but there exist three
different theories which predict the following for X :

I A: If Theory A is valid, X = 0.
I B: If Theory B is valid, X is real and Im(X ) = 0.
I C: If Theory C is valid, X is purely imaginary and non-zero.

We decide that the value of X is interesting only in so far as it could
distinguish between the hypotheses A, B, C or the general case.
Therefore, we are doing hypothesis testing, not parameter estimation.

Hypothesis A is simple,
Hypothesis B is composite, including hypothesis A as a special case.
Hypothesis C is also composite, and separate from A and B.
The alternative to all these is that Re (X ) and Im (X ) are both non-zero.
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Hypothesis Testing Frequentist - Composite Hypotheses

Likelihood Ratio Test - Example
The contours of the log-likelihood function ln L(X ) near its maximum.
X = d is the point where ln L is maximal.
X = b is the maximum of ln L when Im(X ) = 0.
X = c is the maximum of ln L when Re(X ) = 0.

lnL = lnL(θ̂)− 1/2

lnL = lnL(θ̂)− 2

Re(X)

Im(X)

d

b
c

0
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Hypothesis Testing Frequentist - Composite Hypotheses

Likelihood Ratio Test - Example

The maximum likelihood ratio for hypothesis A versus the general case is

λa =
L(0)

L(d)
.

If hypothesis A is true, −2 lnλa ←− correct book p.276, line 5
is distributed asymptotically as a χ2(2), and this give the usual test for
Theory A.
To test Theory B, the m.l. ratio for hypothesis B versus the general case is

λb =
L(b)

L(d)
.

If B is true, −2 lnλb is distributed asymptotically as a χ2(1). Finally,
Theory C can be tested in the same way, using L(c) in place of L(b).
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Hypothesis Testing Bayesian

Hypothesis Testing - Bayesian

Recall that according to Bayes’ Theorem:

P(hyp | data) =
P(data | hyp)P(hyp)

P(data)

The normalization factor P(data) can be determined for the case of
parameter estimation, where all the possible values of the parameter are
known, but in hypothesis testing it doesn’t work, since we cannot
enumerate all possible hypotheses. However it can be used to find the
ratio of probabilities for two hypotheses, since the normalizations cancel:

R =
P(H0 | data)

P(H1 | data)
=
L(H0)P(H0)

L(H1)P(H1)
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Hypothesis Testing Bayesian

Hypothesis Testing - Bayesian

But how do we interpret the ratio of two probabilities?
This would be obvious for frequentist probabilities, but what is a ratio of
beliefs?

If R = 2.5, for example, it means that we believe in H0 2.5 times as much
as we believe in H1.
How can we use the value of R?

For betting on H0. It gives us directly the odds we can accept if we want
to bet on H0 against H1.

Note that R is proportional to the ratio of prior probabilities P(H0)/P(H1),
so there is no way to make the result insensitive to the priors.
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