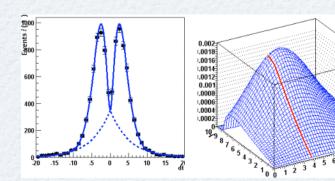
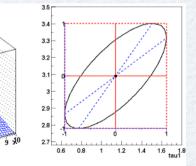
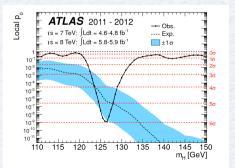
Statistical Software Tools RooFit/RooStats

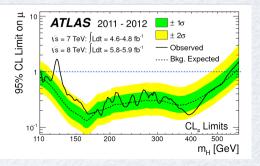
Lorenzo Moneta (CERN)

Terascale Statistics School 2015









Introduction

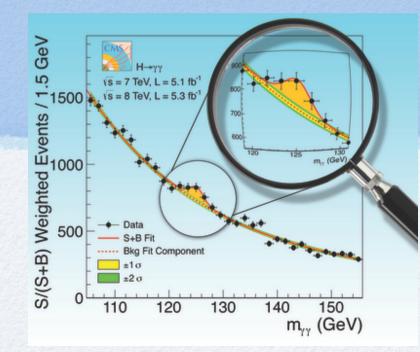
- We will cover only RooFit/RooStats
- Statistical tools for:
 - point estimation: determine the best estimate of a parameter
 - estimation of confidence (credible) intervals
 - lower/upper limits or multi-dimensional contours
 - hypothesis tests:
 - evaluation of p-value for one or multiple hypotheses (discovery significance)
- Model description and sharing of results
 - analysis combination

Outline

• Today:

- Introduction to Fitting in ROOT
- Model building and parameter estimation in RooFit
- Exercises
- Tomorrow
 - Introduction to RooStats
 - Interval estimation tools (Likelihood/Bayesian)
 - Hypothesis tests
 - Frequentist interval/limit calculation (CLs)
 - Exercises
- Thursday
 - Tutorial on building model with the HistFactory

Introduction to Fitting in ROOT



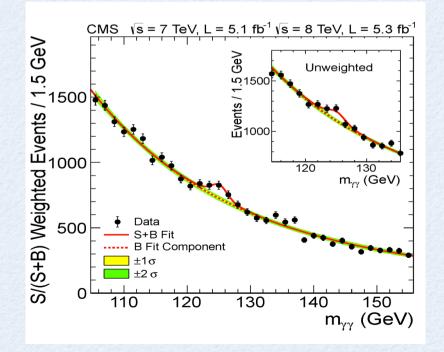
Outline

- Introduction to Fitting:
 - fitting methods in ROOT
 - how to fit a histogram in ROOT,
 - how to retrieve the fit result.
- Building fit functions in ROOT.
- Interface to Minimization.
- Common Fitting problems.
- Using the ROOT Fit GUI (Fit Panel).

What is Fitting ?

• Estimate parameters of an hypothetical distribution from the observed data distribution

- $y = f(x \mid \theta)$ is the fit model function
- Find the best estimate of the parameters θ assuming f (x | θ)



Example

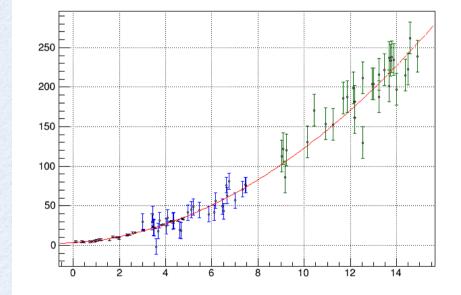
Higgs $\rightarrow \gamma \gamma$ spectrum We can fit for:

- the expected number of Higgs events
- the Higgs mass

Least Square (χ^2) Fit

- Minimizes the deviations between the observed y and the predicted function values:
- Least square fit (χ^2): minimize square deviation weighted by the errors
 - observed errors (Neyman χ^2)
 - $\sigma_i = \sqrt{N_i}$ for the histograms
 - expected errors (Pearson χ^2)
 - $\sigma_i = \sqrt{f(X_{i,}\theta)}$

$$\chi^2 = \sum_i \frac{(Y_i - f(X_i, \theta))^2}{\sigma_i^2}$$



Maximum Likelihood Fit

- The parameters are estimated by finding the maximum of the likelihood function (or minimum of the negative log-likelihood function).
 - Likelihood:

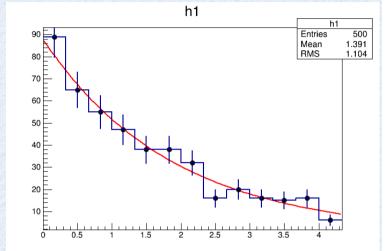
- $L(x|\theta) = \prod_{i} P(x_i|\theta)$
- Find best value θ,
 the maximum of

$$logL = \sum_{i} \log(f(x_i, \theta))$$

- The least-square fit and the maximum likelihood fit are equivalent when the distribution of observed events in each bin is normal.
 - $f(x \mid \theta)$ is gaussian

ML Fit of an Histogram

- The Likelihood for a histogram is obtained by assuming a Poisson distribution in every bin:
 - Poisson($n_i | V_i$)
 - **n**_i is the observed bin content.
 - Vi is the expected bin content,

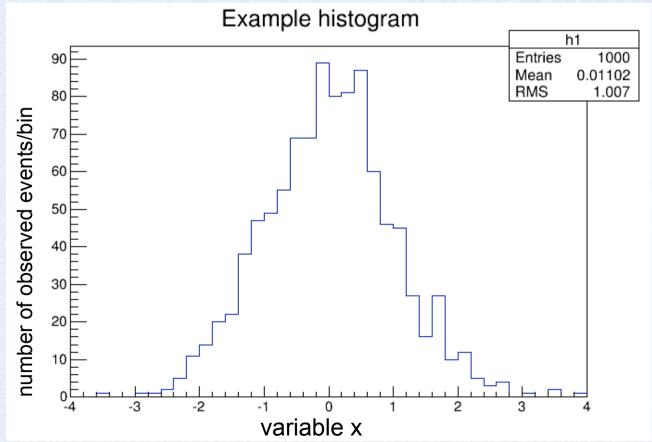


- $V_i = f(x_i | \theta)$, where x_i is the bin center, assuming a linear function within the bin. Otherwise it is obtained from the integral of the function in the bin.
- For large histogram statistics (large bin contents) bin distribution can be considered normal
 - equivalent to least square fit
- For low histogram statistics the ML method is the correct one !

Simple Gaussian Fitting

• Suppose we have this histogram

 we want to estimate the mean and sigma of the underlying gaussian distribution.

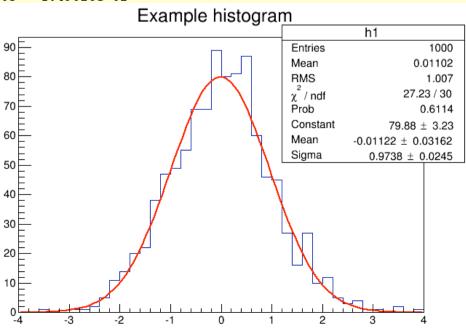


Fitting Histogram

root [] 1	rF1 * f1 =	= new TF	1("f1","	'gaus");	
root [] f	f1->SetPai	rameters	(1,0,1);		
root [] ł	n1 - >Fit(f]	l);			
FCN=27.2252 FR	OM MIGRAD STAT	TUS=CONVERGED	60 CALLS	61 TC	DTAL
	EDM=1.12393	3e-07 STRAT	EGY= 1 ER	ROR MATRIX ACC	CURATE
EXT PARAMETER			STEP	FIRST	
NO. NAME	VALUE	ERROR	SIZE	DERIVATIVE	
1 Constant	7.98760e+01	3.22882e+00	6.64363e-03	-1.55477e-05	
2 Mean	-1.12183e-02	3.16223e-02	8.18642e-05	-1.49026e-02	
3 Sigma	9.73840e-01	2.44738e-02	1.692		Example histog

For displaying the fit parameters:

gStyle->SetOptFit(1111);



Creating the Fit Function

• To create a parametric function object (a TF1):

• we can use the available functions in ROOT library

TF1 * f1 = new TF1("f1","[0]*TMath::Gaus(x,[1],[2])");

- and also use it to write formula expressions
 - [0],[1],[2] indicate the parameters

we can also use pre-defined functions

TF1 * f1 = new TF1("f1","gaus");

- using pre-defined functions we have the parameter name automatically set to meaningful values.
- initial parameter values are estimated whenever possible.
- pre-defined functions avalaible:
 - gaus, expo, landau, pol0,1..,10, chebyshev

Building More Complex Functions

- Sometimes better to write directly the functions in C/C++
 - but in this case object cannot be fully stored to disk
- Using a general free function with parameters:

```
double function(double *x, double *p){
```

```
return p[0]*TMath::Gaus(x[0],p[0],p[1]);
```

```
TF1 * f1 = new TF1("f1",function,xmin,xmax,npar);
```

any C++ object implementing double operator() (double *x, double *p)

```
struct Function {
    double operator()(double *x, double *p){
        return p[0]*TMath::Gaus(x[0],p[0],p[1]);}
};
Function func;
TF1 * f1 = new TF1("f1",&func,xmin,xmax,npar,"Function");
```

e.g using a lambda function (with Cling and C++-11)
auto f1 = new TF1("f1",[](double *x, double *p){return p[0]*x[0];},0,10,1);

Retrieving The Fit Result

- The main results from the fit are stored in the fit function, which is attached to the histogram; it can be saved in a file (except for C/C++ functions were only points are saved).
- The fit function can be retrieved using its name:

TF1 * fitFunc = h1->GetFunction("f1");

• The parameter values/error using indices (or their names):

```
fitFunc->GetParameter(par_index);
```

```
fitFunc->GetParError(par_index);
```

• It is also possible to access the TFitResult class which has all information about the fit, if we use the fit option "S":

```
TFitResultPtr r = h1->Fit(f1,"S");
r->Print();
TMatrixDSym C = r->GetCorrelationMatrix();
```

C++ Note: the TFitResult class is accessed by using operator-> of TFitResultPtr

Some Fitting Options

- Fitting in a Range
- Quite / Verbose: option "Q" / "V".
- Likelihood fit for histograms
 - option "L" for count histograms;
 - option "WL" in case of weighted counts.
- Default is chi-square with observed errors (and skipping empty bins)
 - option "P" for Pearson chi-square (expected errors) with empty bins
- Use integral function of the function in bin
- Compute MINOS errors : option "E"

```
h1->Fit("gaus","","",-1.5,1.5);
```

```
h1->Fit("gaus","V");
```

```
h1->Fit("gaus","L");
```

h1->Fit("gaus","LW");

h1->Fit("gaus","**P**");

h1->Fit("gaus","L I");

h1->Fit("gaus","L E");

All fitting options documented in reference guide or User Guide (Fitting Histogram chapter)

Note on Binned Likelihood Fit

• Log-Likelihood is computed using Baker-Cousins procedure (Likelihood χ^2)

$$\chi_{\lambda}^{2}(\theta) = -2 \ln \lambda(\theta) = 2 \sum_{i} [\mu_{i}(\theta) - n_{i} + n_{i} \ln(n_{i}/\mu_{i}(\theta))]$$

- $-2\ln\lambda(\theta)$ is an equivalent chi-square
- Its value at the minimum can be used for checking the fit quality
 - avoiding problems with bins with low content
- ROOT computes $-\ln\lambda(\theta)$
 - retrieve it using TFitResult::MinFcnValue()

Parameter Errors

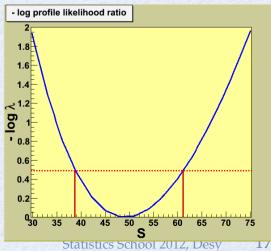
- Errors returned by the fit are computed from the second derivatives of the likelihood function
 - Asymptotically the parameter estimates are normally distributed. The estimated correlation matrix is then:

$$\mathbf{\hat{V}}(\mathbf{\hat{\theta}}) = \left[\left(-\frac{\partial^2 \ln L(\mathbf{x}; \mathbf{\theta})}{\partial^2 \mathbf{\theta}} \right)_{\mathbf{\theta} = \mathbf{\hat{\theta}}} \right]^{-1} = \mathbf{H}^{-1}$$

- A better approximation to estimate the confidence level in the parameter is to use directly the log-likelihood function and look at the difference from the minimum.
 - Method of Minuit/Minos (Fit option "E")
 - obtain a confidence interval which is in general not symmetric around the best parameter estimate

```
TFitResultPtr r = h1->Fit(f1,"E S");
r->LowerError(par_number);
```

```
r->UpperError(par_number);
```



Minimization

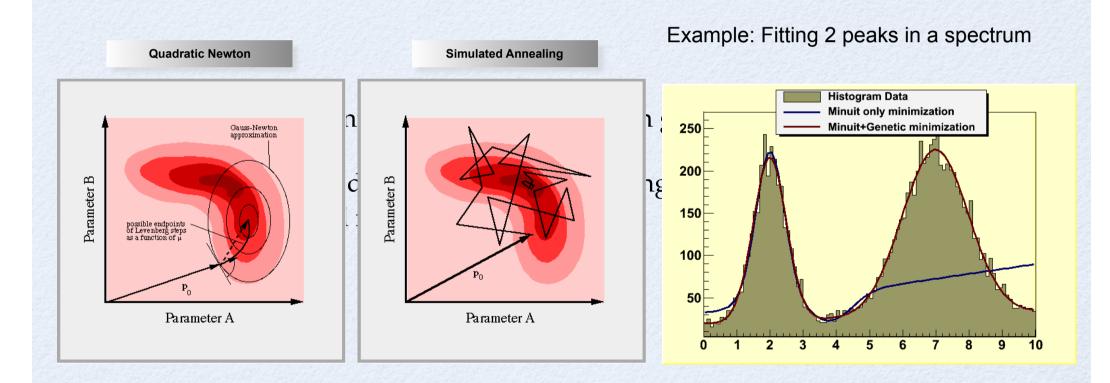
- The fit is done by minimizing the least-square or likelihood function.
- A direct solution exists only in case of linear fitting
 - it is done automatically in such cases (e.g fitting polynomials).
- Otherwise an iterative algorithm is used:
 - Minuit is the minimization algorithm used by default
 - ROOT provides two implementations: Minuit and Minuit2
 - other algorithms exists: Fumili, or minimizers based on GSL, genetic and simulated annealing algorithms
 - To change the minimizer:

ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2");

• Other commands are also available to control the minimization:

ROOT::Math::MinimizerOptions::SetDefaultTolerance(1.E-6);

Minimization Techniques



Function Minimization

- Common interface class (**ROOT::Math::Minimizer**)
- Existing implementations available as plug-ins:
 - Minuit (based on class TMinuit, direct translation from Fortran code)
 - with Migrad, Simplex, Minimize algorithms
 - Minuit2 (new C++ implementation with OO design)
 - with Migrad, Simplex, Minimize and Fumili2
 - Fumili (only for least-square or log-likelihood minimizations)
 - **GSLMultiMin**: conjugate gradient minimization algorithm from GSL (Fletcher-Reeves, BFGS)
 - GSLMultiFit: Levenberg-Marquardt (for minimizing least square functions) from GSL
 - Linear for least square functions (direct solution, non-iterative method)
 - GSLSimAn: Simulated Annealing from GSL
 - Genetic: based on a genetic algorithm implemented in TMVA
- All these are available for ROOT fitting and in RooFit/RooStats
- Possible to combine them (e.g. use Minuit and Genetic)
- Easy to extend and add new implementations
 - e.g. minimizer based on NagC exists in the development branch (see <u>here</u>)

Comments on Minimization

Sometimes fit converges to a wrong solution

- Often is the case of a local minimum which is not the global one.
 - This is often solved with better initial parameter values. A minimizer like Minuit is able to find only the local best minimum using the function gradient.
 - Otherwise one needs to use a genetic or simulated annealing minimizer (but it can be quite inefficient, e.g. many function calls).

Sometimes fit does not converge

Warning in <Fit>: Abnormal termination of minimization.

- can happen because the Hessian matrix is not positive defined
 - e.g. there are no minimum in that region \rightarrow wrong initial parameters;
- numerical precision problems in the function evaluation
 - need to check and re-think on how to implement better the fit model function;
- highly correlated parameters in the fit. In case of 100% correlation the point solution becomes a line (or an hyper-surface) in parameter space. The minimization problem is no longer well defined.

CORRELATI	ON COEF	FICIENTS	
GLOBAL	1	2	
0.99835	1.000	0.998	
0.99835	0.998	1.000	
	GLOBAL 0.99835	GLOBAL 1 0.99835 1.000	CORRELATION COEFFICIENTS GLOBAL 1 2 0.99835 1.000 0.998 0.99835 0.998 1.000

Signs of trouble...

Mitigating fit stability problems

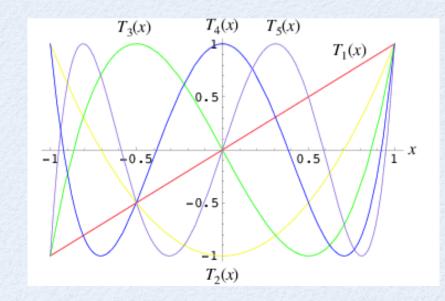
• When using a polynomial parametrization:

- a₀+a₁x+a₂x²+a₃x³ nearly always results in strong correlations between the coefficients.
- problems in fit stability and inability to find the right solution at high order This can be solved using a better polynomial parametrization:

• e.g. Chebychev polynomials

.

 $T_0(x) = 1$ $T_1(x) = x$ $T_2(x) = 2x^2 - 1$ $T_3(x) = 4x^3 - 3x$ $T_4(x) = 8x^4 - 8x^2 + 1$ $T_5(x) = 16x^5 - 20x^3 + 5x$ $T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1.$



The Fit Panel

• The fitting in ROOT using the FitPanel GUI

- GUI for fitting all ROOT data objects (histogram, graphs, trees)
- Using the GUI we can:
 - select data object to fit
 - choose (or create) fit model function
 - set initial parameters
 - choose:
 - fit method (likelihood, chi2)
 - fit options (e.g Minos errors)
 - drawing options
 - change the fit range

Fit Panel 🔰	3
Data Set: TH1D::h1	
Fit Function	7
Type: Predef-1D 💌 gaus	
Operation	
Nop O Add O Conv	
gaus	
Selected:	
gaus Set Parameters	
Conorol D. Mainia atian	
General Minimization	
Fit Settings	
Chi-square User-Defined	
🗖 Linear fit	
Robust: 1.00 🚽 🔲 No Chi-square	
Fit Options	
🗖 Integral 🗖 Use range	
🗖 Best errors 🗖 Improve fit results	
All weights = 1 Add to list	
Empty bins, weights=1 Use Gradient	
Draw Options	
No drawing Do not store/draw Advanced	
× -4.00 ★ 8 6.00 ★	
<u>F</u> it <u>R</u> eset <u>C</u> lose	ī
TH1D::h1 LIB Minuit MIGRAD Itr: 0 Prn: DEF	

Fit Panel (2)

• The Fit Panel provides also extra functionality:

Control the minimization

🗖 🛛 🖌 Fit Panel 🛛 🗙
Data Set: TGraph2D::Graph2DNoError
Fit Function
Type: User Func 💌 f2
Operation
Nop Add Conv
(1000*(([0]*(sin(x)/x))*([1]*(sin(y)/y))))+250
Selected:
(1000*(([0]*(sin(X)X))*([1]*(Set Parameters
General Minimization
Library
O Minuit O Minuit2 O Fumili
GSL C Genetics
Method
Fletcher-Reeves conjugate gradient
Settings - Fletcher-Reeves conjugate gradient
Polak-Ribiere conjugate gradient BFGS conjugate gradient
BFGS conjugate gradient (Version 2)
Levenberg-Marquardt Simulated Annealing
Max tolerance (precision): 0.0001
Max number of iterations:
Print Options O Default O Verbose O Quiet
le Delauit O Verbose O Quiet
<u>U</u> pdate <u>Fit</u> <u>R</u> eset <u>C</u> lose
TGraph2D::Gr LIB GSL CONJFR Itr: 0 Prn: DEF

Contour plot

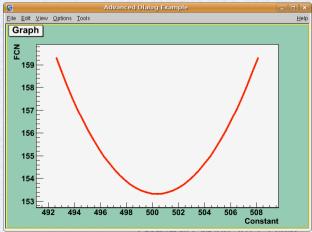
Advanced	Drawing Tools 🛛 🗙
Contour Scan	
Number of Points:	40 🖨
Parameter 1:	Constant 💌
Parameter 2:	Sigma 💌
Confidence Level:	0.683 🛓
Fill Colour:	- 🗂 Superimpose
	<u>D</u> raw <u>C</u> lose

Scan plot of minimization function

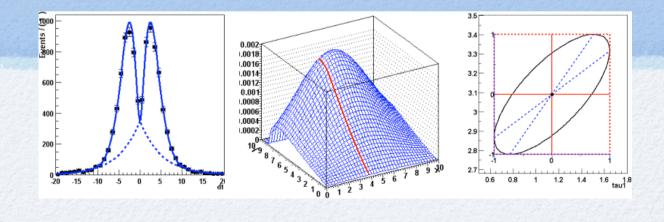
Advanced Drawing Tools	×
Contour Scan Number of Points: 40 Parameter: Constant Min: 492.5937 Max: 508.1276] [
Draw Clos	se

Advanced drawing tools

Ð			Advanced	l Dialog Exa	ample			_ 0
ile <u>E</u> dit <u>\</u>	iew <u>O</u> ptior	ns <u>T</u> ools						H
Graph								
8966. 69 S	-							
	_			_				
S I	-		_					
0.996	-							
	:							
0.994	-							
	: \							
0.992	-							
	-							
0.99	-							
0.988								
0.900	_							
0.986	_							
0.000	_							
0.984								
E	494	496	498	500	502	504	506	
					001		Constant	



RooFit



Outline

Introduction to RooFit

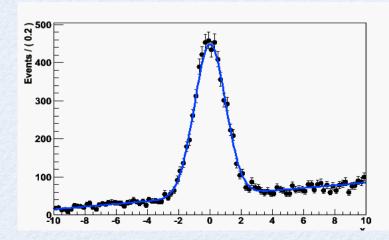
- Basic functionality
- Model building using the workspace
- Composite models

Material based on slides from W. Verkerke (author of RooFit)

Exercises on RooFit:
building and fitting model

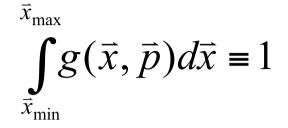
RooFit

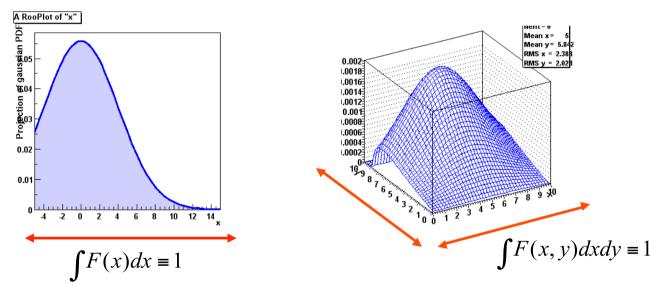
- Toolkit for data modeling
 - developed by W. Verkerke and D. Kirkby
- model distribution of observable x in terms of parameters p
 - probability density function (pdf): P(x;p)
- pdf are normalized over allowed range of observables
 x with respect to the parameters *p*



Mathematic – Probability density functions

- Probability Density Functions describe probabilities, thus
 - All values most be >0
 - The total probability must be 1 *for each p*, i.e.
 - Can have any number of dimensions





- Note distinction in role between *parameters* (p) and *observables* (x)
 - Observables are measured quantities
 - Parameters are degrees of freedom in your model

Why RooFit?

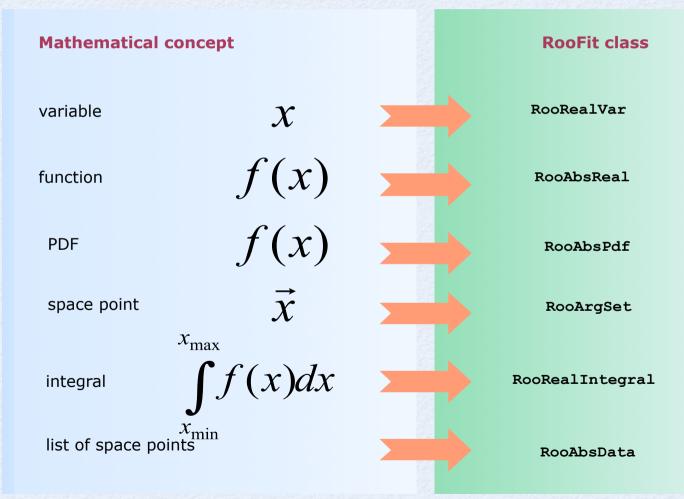
- ROOT function framework can handle complicated functions
 - but require writing large amount of code
- Normalization of p.d.f. not always trivial
 - RooFit does it automatically
- In complex fit, computation performance important
 - need to optimize code for acceptable performance
 - built-in optimization available in RooFit
 - evaluation only when needed
- Simultaneous fit to different data samples
- Provide full description of model for further use

RooFit

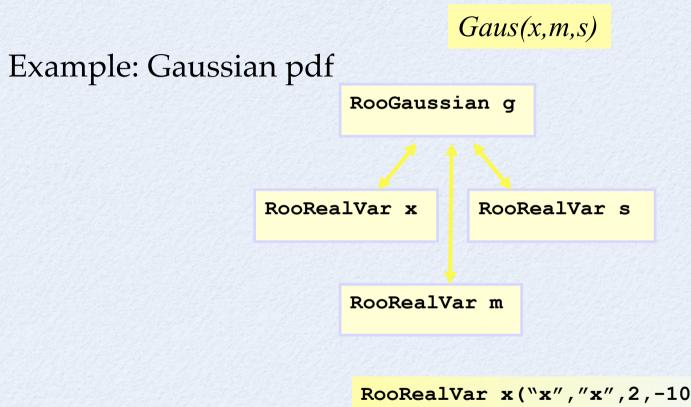
- RooFit provides functionality for building the pdf's
 - complex model building from standard components
 - composition with addition product and convolution
- All models provide the functionality for
 - maximum likelihood fitting
 - toy MC generator
 - visualization

RooFit Modeling

Mathematical concepts are represented as C++ objects



RooFit Modeling



RooFit code:

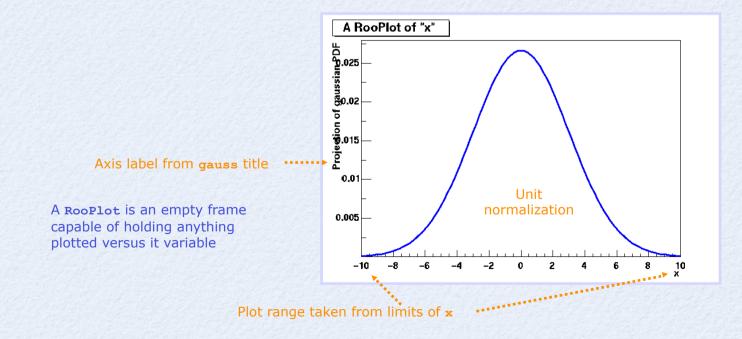
RooRealVar x("x","x",2,-10,10) RooRealVar s("s","s",3) ; RooRealVar m("m","m",0) ; RooGaussian g("g","g",x,m,s)

 Represent relations between variables and functions as client/server links between objects

RooFit Functionality

pdf visualization

RooPlot * xframe = x->frame();
pdf->plotOn(xframe);
xframe->Draw();



RooFit Functionality

• Toy MC generation from any pdf

Generate 10000 events from Gaussian p.d.f and show distribution

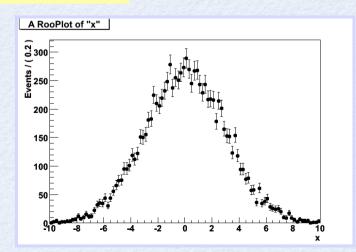
RooDataSet * data = pdf->generate(*x,10000);

data visualization

RooPlot * xframe = x->frame(); data->plotOn(xframe); xframe->Draw();

Note that dataset is **unbinned** (vector of data points, x, values)

Binning into histogram is performed in data->plotOn() call



RooFit Functionality

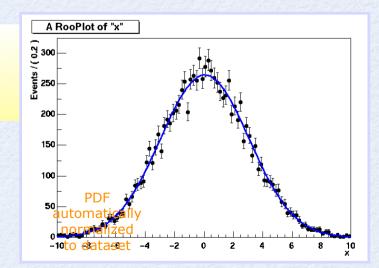
• Fit of model to data

• e.g. unbinned maximum likelihood fit

pdf = pdf->fitTo(data);

data and pdf visualization after fit

RooPlot * xframe = x->frame(); data->plotOn(xframe); pdf->plotOn(xframe); xframe->Draw();



RooFit Workspace

- **RooWorkspace** class: container for all objected created:
 - full model configuration
 - PDF and parameter/observables descriptions
 - uncertainty/shape of nuisance parameters
 - (multiple) data sets
- Maintain a complete description of all the model
 - possibility to save entire model in a ROOT file
 - all information is available for further analysis
- Combination of results joining workspaces in a single one
 - common format for combining and sharing physics results

```
RooWorkspace workspace("w");
workspace.import(*data);
workspace.import(*pdf);
workspace.writeToFile("myWorkspace.root")
```

RooFit Factory

RooRealVar x("x","x",2,-10,10) RooRealVar s("s","s",3) ; RooRealVar m("m","m",0) ; RooGaussian g("g","g",x,m,s)

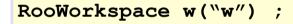
The workspace provides a factory method to autogenerates objects from a math-like language (the p.d.f is made with 1 line of code instead of 4)

```
RooWorkspace w;
w.factory("Gaussian::g(x[2,-10,10],m[0],s[3])")
```

In the tutorial we will work using the workspace factory to build models

Using the workspace

- Workspace
 - A generic container class for all RooFit objects of your project
 - Helps to organize analysis projects
- Creating a workspace



- Putting variables and function into a workspace
 - When importing a function or pdf, all its components (variables) are automatically imported too

```
RooRealVar x("x","x",-10,10) ;
RooRealVar mean("mean","mean",5) ;
RooRealVar sigma("sigma","sigma",3) ;
RooGaussian f("f","f",x,mean,sigma) ;
// imports f,x,mean and sigma
w.import(f) ;
```

Using the workspace

• Looking into a workspace

```
w.Print() ;
variables
......
(mean,sigma,x)
p.d.f.s
.....
RooGaussian::f[ x=x mean=mean sigma=sigma ] = 0.249352
```

• Getting variables and functions out of a workspace

```
// Variety of accessors available
RooRealVar * x = w.var("x");
RooAbsPdf * f = w.pdf("f");
```

• Writing workspace and contents to file

```
w.writeToFile("wspace.root") ;
```

Factory syntax

• Rule #1 – Create a variable

```
x[-10,10] // Create variable with given range
x[5,-10,10] // Create variable with initial value and range
x[5] // Create initially constant variable
```

• Rule #2 – Create a function or pdf object

```
ClassName::Objectname(arg1,[arg2],...)
```

- Leading 'Roo' in class name can be omitted
- Arguments are names of objects that already exist in the workspace
- Named objects must be of correct type, if not factory issues error
- Set and List arguments can be constructed with brackets {}

Factory syntax

- Rule #3 Each creation expression returns the name of the object created
 - Allows to create input arguments to functions 'in place' rather than in advance

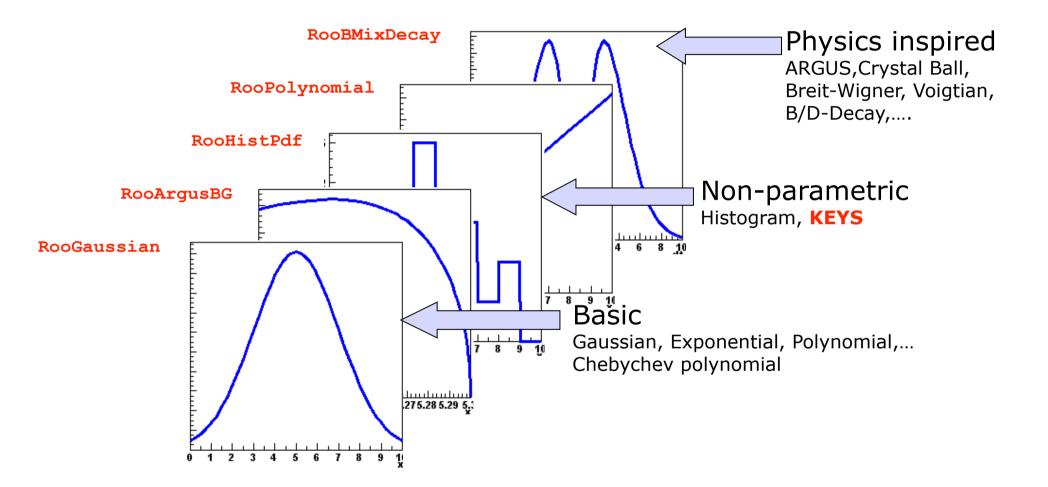
- Miscellaneous points
 - You can always use numeric literals where values or functions are expected
 - It is not required to give component objects a name, e.g.

```
Gaussian::g(x[-10,10],0,3)
```

SUM:: model $(0.5 \times Gaussian(x[-10,10],0,3), Uniform(x));$

Model building – (Re)using standard components

• RooFit provides a collection of compiled standard PDF classes



Easy to extend the library: each p.d.f. is a separate C++ class

Model building – (Re)using standard components

• List of most frequently used pdfs and their factory spec

Gaussian	Gaussian::g(x,mean,sigma)
<pre>Breit-WignerBreitWigner::bw(x,mean,gamma)</pre>	
Landau	Landau::l(x,mean,sigma)
Exponential	<pre>Exponential::e(x,alpha)</pre>
Polynomial	<pre>Polynomial::p(x, {a0,a1,a2})</pre>
Chebychev	Chebychev:: $p(x, \{a0, a1, a2\})$
Kernel Estimation	KeysPdf::k(x,dataSet)
Poisson	Poisson::p(x,mu)
Voigtian (=BW⊗G)	Voigtian::v(x,mean,gamma,sigma)

Factory syntax – using expressions

Customized p.d.f from interpreted expressions

w.factory("EXPR::mypdf('sqrt(a*x)+b',x,a,b)") ;

• Customized class, compiled and linked on the fly

w.factory("CEXPR::mypdf('sqrt(a*x)+b',x,a,b)") ;

• re-parametrization of variables (making functions)

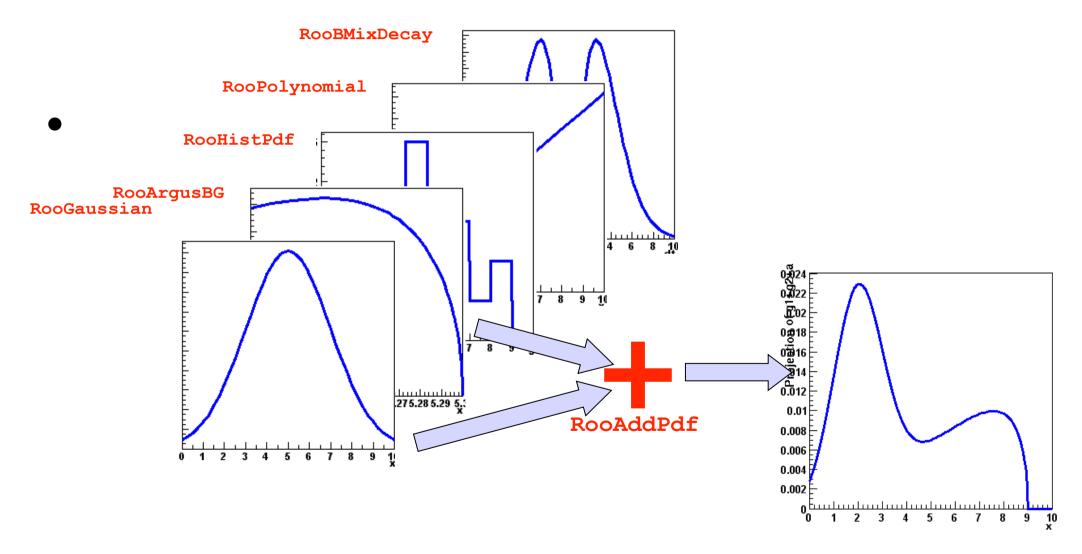
```
w.factory("expr::w('(1-D)/2',D[0,1])") ;
```

- note using expr (builds a function, a RooAbsReal)
- instead of EXPR (builds a pdf, a RooAbsPdf)

This usage of upper vs lower case applies also for other factory commands (SUM, PROD,....)

Model building – (Re)using standard components

- Most realistic models are constructed as the sum of one or more p.d.f.s (e.g. signal and background)
- Facilitated through operator p.d.f RooAddPdf



Factory syntax: Adding p.d.f.

• Additions of PDF (using fractions)

SUM::name(frac1*PDF1,PDFN)

SUM::name(frac1*PDF1,frac2*PDF2,...,PDFN)

- Note that last PDF does not have an associated fraction

$$F(x) = f \times S(x) + (1 - f)B(x)$$
; $N_{exp} = N$

• PDF additions (using expected events instead of fractions)

SUM::name(Nsig*SigPDF,Nbkg*BkgPDF)

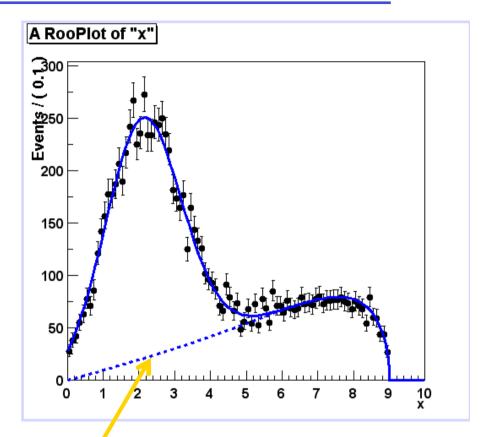
$$F(x) = \frac{N_S}{N_S + N_B} \times S(x) + \frac{N_B}{N_S + N_B} B(x) \quad ; \quad N_{exp} = N_S + N_B$$

- the resulting model will be extended
- the likelihood will contain a Poisson term depending on the total number of expected events (Nsig+Nbkg)

 $L(x | p) \rightarrow L(x|p)Poisson(N_{obs}, N_{exp})$

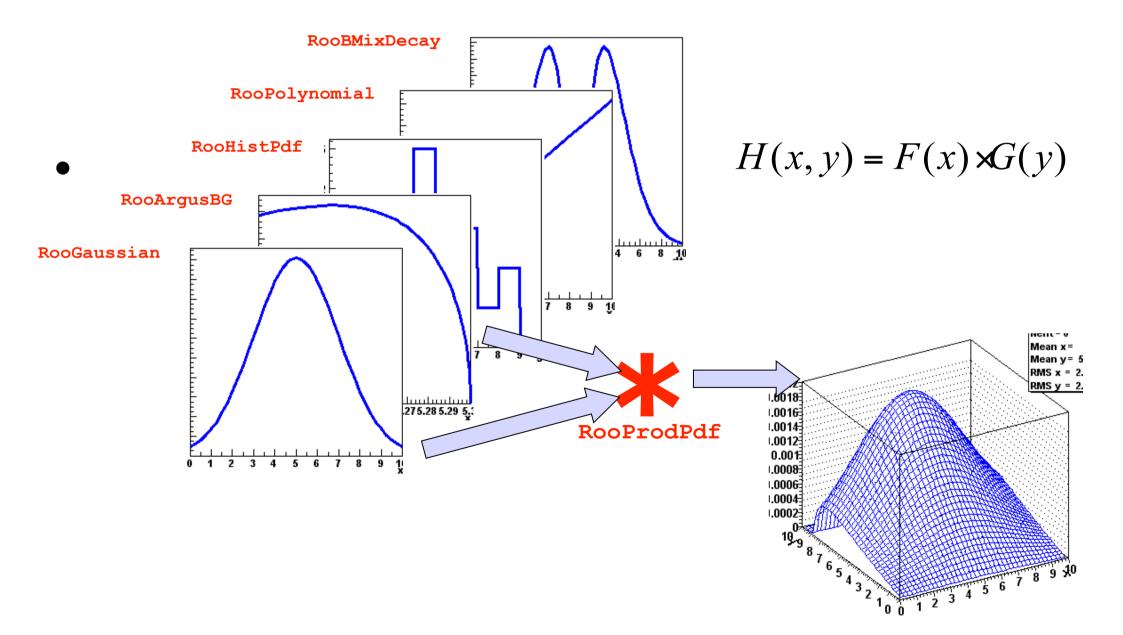
Component plotting - Introduction

- Plotting, toy event generation and fitting works identically for composite p.d.f.s
 - Several optimizations applied behind the scenes that are specific to composite models (e.g. delegate event generation to components)
- Extra plotting functionality specific to composite pdfs
 - Component plotting



```
// Plot only argus components
w::sum.plotOn(frame,Components("argus"),LineStyle(kDashed)) ;
// Wildcards allowed
w::sum.plotOn(frame,Components("gauss*"),LineStyle(kDashed)) ;
```

Model building – Products of uncorrelated p.d.f.s



Uncorrelated products – Mathematics and constructors

 Mathematical construction of products of uncorrelated p.d.f.s is straightforward

2D

nD

1

$$H(x, y) = F(x) \times G(y) \qquad H(x^{\{i\}}) = \prod F^{\{i\}}(x^{\{i\}})$$

- No explicit normalization required \rightarrow If input p.d.f.s are unit normalized, product is also unit normalized
- (Partial) integration and toy MC generation automatically uses factorizing properties of product, e.g. is deduced from structure.

$$\int H(x, y) dx \equiv G(y)$$

• Corresponding factory operator is **PROD**

```
w.factory("Gaussian::gx(x[-5,5],mx[2],sx[1])") ;
w.factory("Gaussian::gy(y[-5,5],my[-2],sy[3])") ;
w.factory("PROD::gxy(gx,gy)") ;
```

Introducing correlations through composition

- RooFit pdf building blocks do not require variables as input, just real-valued functions
 - Can substitute any variable with a function expression in parameters and/or observables

$$f(x;p) \Rightarrow f(x,p(y,q)) = f(x,y;q)$$

- Example: Gaussian with shifting mean

w.factory("expr::mean('a*y+b',y[-10,10],a[0.7],b[0.3])") ; w.factory("Gaussian::g(x[-10,10],mean,sigma[3])") ;

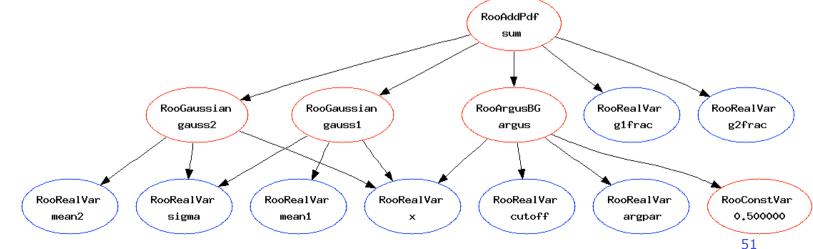
 No assumption made in function on a,b,x,y being observables or parameters, any combination will work

Operations on specific to composite pdfs

 Tree printing mode of workspace reveals component structure – w.Print("t")

```
RooAddPdf::sum[ glfrac * gl + g2frac * g2 + [%] * argus ] = 0.0687785
RooGaussian::g1[ x=x mean=mean1 sigma=sigma ] = 0.135335
RooGaussian::g2[ x=x mean=mean2 sigma=sigma ] = 0.011109
RooArgusBG::argus[ m=x m0=k c=9 p=0.5 ] = 0
```

- Can also make input files for GraphViz visualization
 (w.pdf("sum")->graphVizTree("myfile.dot"))
- Graph output on ROOT Canvas in near future (pending ROOT integration of GraphViz package)



Constructing joint pdfs (RooSimultaneous)

- Operator class SIMUL to construct joint models at the pdf level
 - need a discrete observable (category) to label the channels

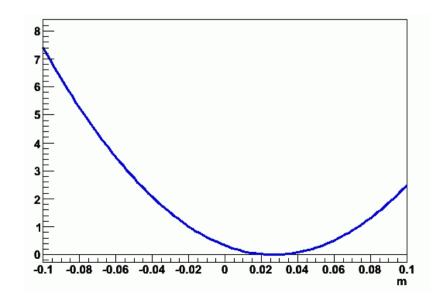
```
// Pdfs for channels `A' and `B'
w.factory("Gaussian::pdfA(x[-10,10],mean[-10,10],sigma[3])") ;
w.factory("Uniform::pdfB(x)") ;
// Create discrete observable to label channels
w.factory("index[A,B]") ;
// Create joint pdf (RooSimultaneous)
w.factory("SIMUL::joint(index,A=pdfA,B=pdfB)") ;
```

- Construct joint datasets
 - contains observables ("x") and category ("index")

Constructing the likelihood

- So far focus on construction of pdfs, and basic use for fitting and toy event generation
- Can also explicitly construct the likelihood function of and pdf/ data combination
 - Can use (plot, integrate) likelihood like any RooFit function object

```
RooAbsReal* nll = pdf->createNLL(data) ;
RooPlot* frame = parameter->frame() ;
nll->plotOn(frame,ShiftToZero()) ;
```



Constructing the likelihood

- Example Manual MIMIZATION using MINUIT
 - Result of minimization are immediately propagated to RooFit variable objects (values and errors)

```
// Create likelihood (calculation parallelized on 8 cores)
RooAbsReal* nll = w::model.createNLL(data,NumCPU(8)) ;

RooMinimizer m(*nll) ; // create Minimizer class
m.minimize("Minuit2","Migrad"); // minimize using Minuit2
m.hesse() ; // Call HESSE
m.minos(w::param) ; // Call MINOS for 'param'
RooFitResult* r = m.save() ; // Save status (cov matrix etc)
```

- Also other minimizers (Minuit, GSL etc) supported
- N.B. Different minimizer can also be used from RooAbsPdf::fitTo

```
//fit a pdf to a data set using Minuit2 as minimizer
pdf.fitTo(*data, RooFit::Minimizer("Minuit2","Migrad")) ;
```

Basics – Importing data

• Unbinned data can also be imported from ROOT **TTrees**

```
// Import unbinned data
RooDataSet data("data","data",x,Import(*myTree)) ;
```

- Imports **TTree** branch named "x".
- Can be of type Double_t, Float_t, Int_t or UInt_t.
 All data is converted to Double_t internally
- Specify a RooArgSet of multiple observables to import multiple observables
- Binned data can be imported from ROOT **THx** histograms

```
// Import binned data
RooDataHist data("data","data",x,Import(*myTH1)) ;
```

- Imports values, binning definition and SumW2 errors (if defined)
- Specify a **RooArgList** of observables when importing a TH2/3.

RooFit Summary

- Overview of RooFit functionality
 - not everything covered
 - not discussed on how it works internally (optimizations, analytical deduction, etc..)
- Capable to handle complex model
 - scale to models with large number of parameters
 - being used for many analysis at LHC
- Workspace:
 - easy model creation using the factory syntax
 - tool for storing and sharing models (analysis combination)

RooFit Documentation

- Starting point: <u>http://root.cern.ch/drupal/content/roofit</u>
- Users manual (134 pages ~ 1 year old)
- Quick Start Guide (20 pages, recent)
- Link to 84 tutorial macros (also in \$ROOTSYS/tutorials/roofit)
- More than 200 slides from *W. Verkerke* documenting all features are available at the *French School of Statistics* 2008
 - <u>http://indico.in2p3.fr/getFile.py/access?contribId=15&resId=0&materialId=slides&confId=750</u>

Time For Exercises !

Follow the RooFit exercises at the Twiki page: https://twiki.cern.ch/twiki/bin/view/RooStats/RooStatsTutorialsMarch2015