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Decisions and Tests Exercises

Yesterday
m Confidence levels
m Confidence level belt construction
m Confidence intervals

m Coverage
Today
m Hypotheses, decisions, and tests
m Limit calculation
m The CLs method
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Decisions and Tests

Overview

@ Decisions and Tests
m Statistical hypotheses testing (Frequentist)
m Significance
m Signal and Background Hypotheses
m Neyman-Pearson
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ns and Tests i Tools Exercises

Sfatistical hypotheseér testlhg (Freq'Uentist)

Interpretation of Data

Often (not only in Physics) measured data has to be interpreted
within a given theory.

Therefore:
m A hypothesis has to be defined (The Model)
m Perhaps, parameters of the model are determined
m Test the hypothesis with measurements

Goal: Quantify the agreement between theory model and the
measured data

Methods: Statistical hypothesis testing, x2-Test, Student’s
t-Test, Kolmogorov-Smirnov-Test, ...
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The Null-Hypothesis

Karl Popper: ,Empirical theories are characterized by
falsifiability. Science should adopt a methodology based on
falsification, because no number of experiments can ever prove
a theory, but a single experiment can contradict one.”

The null-hypothesis typically proposes a general or default
position, and can be tested against an alternative hypothesis.
If the data rejects the null-hypothesis, then one can conclude
that the opposite is true.

The null-hypothesis should be defined with great care, and
before the experiment is started!
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Exercises

Binomial Example: Coin-toss

Toss a random coin 10 times, it comes down head 7 times.
m Null-hypothesis: The coin is fair.
m Alternative hyposesis: The coin is biased.
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Binomial Example: Coin-toss

Toss a random coin 10 times, it comes down head 7 times.

m Null-hypothesis: The coin is fair.
m Alternative hyposesis: The coin is biased.

Pbinomial(0~57 107 7) = 0-127 Pbinomial(0~57 107 8) = 0-0447
Pbinomiai(0.5,10,9) = 9.8 - 1073, Phbinomiai(0.5,10,10) = 9.8 - 10~*

The probability to get head up or head down seven or more times out of ten is
2 x (12% + 4% + 1% + 0.1%) = 34.4%, that's not significant.
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Binomial Example: Coin-toss

Toss a random coin 10 times, it comes down head 7 times.

m Null-hypothesis: The coin is fair.
m Alternative hyposesis: The coin is biased towards heads.

Pbinomial(0~57 107 7) = 0-127 Pbinomial(0~57 107 8) = 0-0447
Pbinomiai(0.5,10,9) = 9.8 - 1073, Phbinomiai(0.5,10,10) = 9.8 - 10~*

The probability to get head up or head down seven or more times out of ten is
2 x (12% + 4% + 1% + 0.1%) = 34.4%, that's not significant.

The probability to get head up seven or more times out of ten is
12% + 4% + 1% + 0.1% = 17.2%, that’s hardly significant either!
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Binomial Example: Coin-toss

Toss a random coin 10 times, it comes down head 7 times.
m Null-hypothesis: The coin is fair.

Pb/‘nam/‘al(o-57 10, 7) = 0-127 Pbinomial(o-57 107 8) = 0.044,
Ppinomiai(0.5,10,9) = 9.8 1072,  Ppinomias(0.5,10,10) = 9.8 - 10~*

The probability to get head up or head down seven or more times out of ten is
2 x (12% + 4% + 1% + 0.1%) = 34.4%, that’s not significant.

The probability to get head up seven or more times out of ten is
12% + 4% + 1% + 0.1% = 17.2%, that’s hardly significant either!

To show signs of bias at the 95% confidence level, the coin would need to come down
at least 9 out of 10 times head or tails!
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Decisions and Tests

Example: Coin toss

35

mEEE
Memo to all teams playing Belgium in the World Cup this year:
don't let them use their own coins for the toss.
Mathematicians say the coins issued in the eurozone's
administrative heartland are more likely to land heads up than
down.

King Albert, who appears on Belgian coins, appears to be a bit of
a lightweight, according to Polish mathematicians Tomasz
Gliszczynski and Waclaw Zawadowski. The two professors and
their students at the Podlaska Academy in Siedlce spun a
Belgian one euro coin 250 times, and found it landed heads up
140 times. The cent coins proved even more likely to land heads
up.

"The euro is struck asymmetrically,” Prof Gliszczynski, who
teaches statistics, told Germany's Die Welt newspaper. LL

The Guardian, 4.1.2002 mmn
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Tools Exercises

Is that really significant?

Null-hypothesis: 125 times head out of 250, p=0.5.
Two ways to calculate the significance:

Kl Statistical uncert.: 0 = /N-p(1 —p)=7.9

Fluctuation: s, = unﬁg’g’nty — 140-125 _ 1.9

H By summing up the Binomial probabilites from

The double (single) sided significance that the coin is not
biased (towards heads) is o ~ 6.6% (« ~ 3.3%).
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Is that really significant?

El The original ,Die Welt” article states further, that the
Professor has examined all types of 1-Euro and 2-Euro
coins. — there are 2 x 15 different common national coins
(excluding all rare designs).

H The look-elsewhere effect has to be considered:

E If ,the experiment”, i.e. tossing a coin 250 times is
repeated 30 times, than it is not credible to quote only the
one result with the largest difference!

A After 30 experiments, a minimal p-value of any of these
experiments of 1/30 = 3.3% is expected!

H The observed significance of 3.3% (6.6%) is actually very
similar (less significant) as expected

Limit determination Il Christian Autermann



Decisions and Tests
O000e

Hypothesis testing

Hypothesis testing

m The Null-hypothesis and the alternative hypothesis have to
be clearly defined

m ideally before the experiment is carried out!

m Example 1: The Belgium 2-Euro coin is not biased.
m Example 2: No type of 1-Euro or 2-Euro coins is biased.

m Defining the hypotheses after looking at the outcome of the
experiment is cheating (at least)!

V.
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Particle physics: Signal and Background Hypotheses

m In particle-physics the ,Null-hypothesis” is usually the expectation, that
the observed data will follow the predictions of the Standard Model.

m The Standard Model predicts the process cross-sections. With the
integrated luminosity and the selection efficiency the background
probability density function is determined.

m The test-statistic is usually the event yield in a given selection.
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Particle physics: Signal and Background Hypotheses

m In particle-physics the ,Null-hypothesis” is usually the expectation, that
the observed data will follow the predictions of the Standard Model.

m The Standard Model predicts the process cross-sections. With the
integrated luminosity and the selection efficiency the background
probability density function is determined.

m The test-statistic is usually the event yield in a given selection.

Example:

arbitrary

0.2,

background expectation: 018
0.16

b = 4 0.14

signal expectation: o

0.
s=11 0.08

0.06

|

observed data:
0.04

d=7 002"
Bl b b b e
2 4 6 8 10 12 14 16 18 20

event yield
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Decisions and Tests

Particle physics: Signal and Background Hypotheses

m In particle-physics the ,Null-hypothesis” is usually the expectation, that
the observed data will follow the predictions of the Standard Model.

m The Standard Model predicts the process cross-sections. With the
integrated luminosity and the selection efficiency the background
probability density function is determined.

m The test-statistic is usually the event yield in a given selection.

Example:

arbitrary
o
Ny

o
R

background expectation:

o
5

b=4

Observationd =7

o
I

o
R

signal expectation:

°
|

s=11

o
8

TT[6ITITTT[TTT[TTT“H“H“H“H“H“H

observed data:

a=7

2 4 6 8 10 12 14 16 18 20

event yield
Limit determination Il Christian Autermann 11/43



Particle physics: Signal and Background Hypotheses

m In particle-physics the ,Null-hypothesis” is usually the expectation, that
the observed data will follow the predictions of the Standard Model.

m The Standard Model predicts the process cross-sections. With the
integrated luminosity and the selection efficiency the background
probability density function is determined.

m The test-statistic is usually the event yield in a given selection.

Example: g F
3 %
background expectation: ® omf-
016{—
b=4 014; Observation d = 7
. X onF- Alternative hypothesis: A_,, =15
Slgnal expectation: E (signal + background)
01—
s=11 008;
006{—
observed data: s
d=7 002?
bl e e
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event yield
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Particle physics: Signal and Background Hypotheses

m In particle-physics the ,Null-hypothesis” is usually the expectation, that
the observed data will follow the predictions of the Standard Model.

m The Standard Model predicts the process cross-sections. With the
integrated luminosity and the selection efficiency the background
probability density function is determined.

m The test-statistic is usually the event yield in a given selection.

Example:

arbitrary

0.2,

background expectation:

018

b=4 016

Observationd =7

signal expectation: o012 Alternative hypothesis: A_, = 15

(signal + background)
s=11
observed data:

d=7

TT[6ITITTT[TTT[TTT“H“H“H“H“H“H

2 4 6 8 10 12 14 16 18 20

event yield
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Decisions and Tests mits

What does it mean?

m The probability (p-value) to reject the null-hypothesis Hy, while Hy is
true, is [° f(x|Ho)dx = a < 1 — Clitical

] Slmllarly, the probability to reject the alternative hypothesis H; if it's true
is f X‘H1)dX = ﬁ <1-— CLcrmcal

m Usual choice: Clitica = 95%.
m Here:a=11%, 8 =1.8%

Example:
. g F
background expectation: £ oo
° 0.18;
b=4 016;
ol Observationd =7
Signal expectation: 012; Alternative hypothesis: A_,, = 15
c (signal + background)
01—
s=11 m;
OOSi
observed data: voel/
002;
d=7 Eovl P IR AR A
2 12 14 2

event yield
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Decisions and Tests
@000

Hypothesis testing

How to distinguish between hypotheses?

m In general, there is no ,observed data” defining the value of
the test statistics x4 and therefore the probability to accept
or to reject a hypothesis

m In general we might be interested to find x4 such, that the

null-hypothesis or the alternative hypothesis are accepted
or rejected with certain efficiencies.
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Decisions and Tests
(o] lele}

Type | and Type Il Errors

If we regard two mutually exclusive hypotheses that are either true or false

There are four possible outcomes:
m Accepting a true hypothesis
m Rejecting a wrong hypothesis
m Rejecting a true hypothesis (Type | error)

m Accepting a wrong hypothesis (Type Il error)

Hypothesis
If « is the significance of the test,
then Type | errors are bound to occur

less than or equal to a:

/ Pr(x)dx <
X

X Reject
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Decisions and Tests
(o] lele}

Type | and Type Il Errors

If we regard two mutually exclusive hypotheses that are either true or false

There are four possible outcomes:
m Accepting a true hypothesis
Rejecting a wrong hypothesis

|
m Rejecting a true hypothesis (Type | error)
[

Accepting a wrong hypothesis (Type Il error)

Alternative hypothesis

The probability to mistakenly accept
the hypothesis H; is 3, and 1 — S is
the power of the test:

X
/ Pa(x)dx < 3

e
Accept X Reject
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Decisions and Tests

OO0 ®00

Type | and Type Il Errors

If we regard two mutually exclusive hypotheses that are either true or false

There are four possible outcomes:
m Accepting a true hypothesis
m Rejecting a wrong hypothesis

m Rejecting a true hypothesis (Type | error)
m Accepting a wrong hypothesis (Type Il error)

Both, o and 3 should be as small as
possible, but there is a tradeoff
between minimizing « and g.

The relative importance of « or g8
depends on the problem!

Example b-tagging: decide between
and light-jet hypothesis.

Hypothesis Alternative hypothesis

Accept X Reject
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Decisions and Tests

Exercises

Example: Cow-fever epidemic

Let’s assume the really dangerous ,cow-fever” disease results always in a
fever of 39.7 C with a Gaussian spread of 0.2 C. Patients with normal flu only
have temperature 39.2 + 0.2 C and are 100 times more likely.

Where to cut (fever-threshold for treating a patient ambulant or stationary) if

we want a test-power of 1 — 8 = 90%?

Hypothesis Alternative hypothesis

Accept X Reject
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Exercises

Decisions and Tests

Example: Cow-fever epidemic

Let’s assume the really dangerous ,cow-fever” disease results always in a
fever of 39.7 C with a Gaussian spread of 0.2 C. Patients with normal flu only
have temperature 39.2 + 0.2 C and are 100 times more likely.

Where to cut (fever-threshold for treating a patient ambulant or stationary) if

we want a test-power of 1 — 8 = 90%?

Case 1: Accepting 3 = 10% of normal
flu patients, leads to the rejection of

~ 15% cow-fever patients (Type |
error) and more than 92% beds are
occupied by normal flu patients.

, Hypothesis Alternative hypothesis

Accept X Reject
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Exercises

Example: Cow-fever epidemic

Let’s assume the really dangerous ,cow-fever” disease results always in a
fever of 39.7 C with a Gaussian spread of 0.2 C. Patients with normal flu only
have temperature 39.2 + 0.2 C and are 100 times more likely.

Where to cut (fever-threshold for treating a patient ambulant or stationary) if
we want a test-significance of @ = 5%?

Hypothesis Alternative hypothesis
Case 2: Accepting 95% of cow-fever
patients (significance o = 5%) by
cutting at 39.37 C leads to a Type Il
error (accepted normal flu patients) of
B =~ 80%. Now, more than 98.8% beds
are occupied by normal flu patients.

Accept X Reject
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Decisions and Tests

Exercises

Example: Cow-fever epidemic

Let’s assume the really dangerous ,cow-fever” disease results always in a
fever of 39.7 C with a Gaussian spread of 0.2 C. Patients with normal flu only
have temperature 39.2 + 0.2 C and are 100 times more likely.

Where to cut (fever-threshold for treating a patient ambulant or stationary) if

we want a test-significance of @ = 5%?

In reality the clinic will probably
choose a and 3 according to other
constraints, e.g. the number of
available beds, etc.

f Hypothesis Alternative hypothesis

Accept X Reject

tian Autermann
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Decnsnons and Tests lelts

The best test, for which both « and 5 are small as p033|ble is
called a Neyman-Pearson test:

The Neyman-Pearson lemma

When performing a hypothesis test between two hypotheses Hj,
and Hjy, then the likelihood-ratio test which rejects H; in
favour of H, when

LHh(X) . S
> Q for a given significance «
L(x) ~ 0 g g

is the most powerful test-statistic to minimize both oo and 5.

Q:

m Both hypothesis Hy, and H; have to be explicitely defined and have to be
simple.

m The acceptance region giving the highest power 1 — 3 for a given
significance « is the region comprised by the above (in)equation.

m In the one-dimensional case, a cut on x for a specific « (e.g. b-tag
efficiency) determines 3 (and therefore the purity).
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Limits

Overview

@ Limits
m Event yields
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Limits

Limits
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ecisions and Tests

Limit definition

m The observed limit on the signal event-yield at CLs,, = 95% is defined
as the s, for which

B = /d Q(x|H;)dx
< 1looCLs+b.
m In this example Q(x|H;) is the Poisson p.d.f. with a mean A = s + b. )
Example:
-  F
background expectation: oF
b4 “F ovenind-7
o Alternative hypothesis: %, = 15
observed data: = (signal + backoround)
d=7 3
limit on s + b at 95% C.L.: M:
S L

s+b=125 svent
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Limit calculation: Example

background expectation: b = 4
observed data: d =7
limitons +bat95% C.L.:s+b=12.5

-

stb

o
Ny

signal yield s =0

&rbitrary

— CLs+b =0.916051

90%

confidence level CL,
Q
T

95%

99%

A A P R PRI AU IR AU AP APAPET PR
R 5 10 i 20 % 2 4 6 8 10 12 1
expected yield <d > signal yield s

KK (=]

PDF reader with Java (e.g. Adobe Acrobat) necessary for animation
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Remarks on limit calculation

The test-statistic Q(x|H;) was in the example a Poisson pdf modelling
the under the H; hypothesis expected statistical uncertainties of the
measurement (the data).

The test-statistics Q(x|H;) may incorporate also systematical
uncertainties on the background o, and on the signal estimation o, €.9.

Q(x|H;) = Poisson(As+p) ® Gauss(b, op) @ Gauss(s, os)
In general, Q(x|Ho) and Q(x|H;) may be defined by a likelihood that

distinguishes both hypotheses

Essentially a one-dimensional non-linear minimization problem,
numerical solution quite time consuming

In this case, the agreement of the measured data with the
background-only expectation, i.e. the null-hypothesis Hp, is not directly
considered.

The limit on the signal event yield does not depend on the expected
signal event yield!
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Decisions and Tests

Multi-channel limits

m Since likelihood functions are multiplicative, multiple statistically
exclusive channels i.e. from different exclusive selections or histogram
bins can be easily combined:

bins

L) =[] Ls0
b=1

where the Ly(x) are the test-statistics of the individual single-bin
counting experiments.

m Systematic uncertainties affecting the estimation of the background or
signal prediction ¢? and of may be correlated among different bins. This
can be considered when drawing pseudo-data from the hypotheses
test-statistics.
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Limits
00000

Expected limits and limit uncertainties

m Expected limits are usually defined as the 50% quantile, i.e. the median,
of the distribution of observed limits for a number of
pseudo-experiments; where the pseudo-observations are drawn
according to the background-only null-hypothesis test-statistic Hp.

m The +10 uncertainties on the expected limit are equivilantly the 16%
and 84% quantiles.
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CLs

Overview

@ CLs
m Modified frequentist approach
m LEP Higgs limit
m LHC Higgs limits
m LHC SUSY limits
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Limit definition

m An observed limit on the signal event-yield at CLs., = 95% can be
defined as the s, for which

dObS es+b(s+ b)d

B =
|
prars d!
< 11— Cl—s+b~
V
Example:
§ F
background expectation: %
o18F-
b = 4 OIA; Observationd =7
ol Alternative hypothesis: A, =15
Observed data. E (signal + background)
. 01—
003;
d = 7 0.05;
. . OOA;
limiton s + b at 95% C.L.: ol
o

1 2
event yield

s+b=125
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The modified Frequentist procedure (CLs)

CLs is a frequentist like statistical analysis which avoids excluding or
discovering signals, that the analysis is not really sensitive to.

The null-hypothesis is that there is no signal and the alternate hypothesis that
it exists.

Limit determination Il Christian Autermann



The modified Frequentist procedure (CLs)

CLs is a frequentist like statistical analysis which avoids excluding or
discovering signals, that the analysis is not really sensitive to.

The null-hypothesis is that there is no signal and the alternate hypothesis that
it exists.

Example: Observing less than the mean expected background events could
be accommodated best with a negative signal cross-section. The exclusion
may be so strong that even zero signal is excluded at a certain confidence
level.
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Decisions and Tests

The modified Frequentist procedure (CLs)

CLs is a frequentist like statistical analysis which avoids excluding or
discovering signals, that the analysis is not really sensitive to.

The null-hypothesis is that there is no signal and the alternate hypothesis that
it exists.

Example: Observing less than the mean expected background events could
be accommodated best with a negative signal cross-section. The exclusion
may be so strong that even zero signal is excluded at a certain confidence
level.

This is a perfectly valid result in terms of statistics, but it says more about
fluctuations of the (known) background, than about the hypothetical signal we
are interested in!
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Decisions and Tests

The modified Frequentist procedure (CLs)

CLs is a frequentist like statistical analysis which avoids excluding or
discovering signals, that the analysis is not really sensitive to.

The null-hypothesis is that there is no signal and the alternate hypothesis that
it exists.

Example: Observing less than the mean expected background events could
be accommodated best with a negative signal cross-section. The exclusion
may be so strong that even zero signal is excluded at a certain confidence
level.

This is a perfectly valid result in terms of statistics, but it says more about
fluctuations of the (known) background, than about the hypothetical signal we
are interested in!

— Normalize the confidence level in the signal+background hypothesis
CLs. 5 to the confidence level for the background-only hypothesis CL,,.
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Decisions and Tests

Introducing CLs method

The modified frequentist re-normalization is simply:

CLs+b
CLy

CLs =

CLs gives an approximation to the confidence in the signal hypothesis one
might have obtained if the experiment had been performed in the complete
absence of background. CLs tries to reduce the dependency on the
uncertainty due to the background.

Strictly, CL; is not a confidence, but a ratio of confidences.

m Consequentially, the false exclusion rate is generally less than the
nominal rate CL,

m it increases the ,coverage” of the analysis,

m it gives a consistent performance compared to CLs,, at small expected
signal but different background rates.
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Decisions and Tests Exercises

CLs: Single counting experiment

For a counting experiment with a single channel, CL; takes the following form:

CLsip
CLy
Poisson(s + b, dobs)
Poisson(b, dops)

CLs =

where s + b (or b) come from the Poisson distributions of number of events
for the signal+background (background-only) hypotheses, and dps is the
number of events observed.

The modified frequentist signal exclusion confidence becomes:

dops €~ (09 (b+s)"

| — {_%&n=0_
c Gobs e=bbn
n=0 n!

Which is (accidentally!) similar to the result we obtained by computing the
constrained Bayesian integral with a flat prior.
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Decisions and Tests imi Exercises

CLs: Likelihood-ratio test-statistic for a counting experiment
Using a likelihood-ratio as test-statistic to compute CLs,, and CL:

_ Poisson(s(my) + b, dobs)

X Poisson(b, dobs)

Where the expected signal s depends e.g. on a model parameter (e.g. the
Higgs mass my). Likelihoods are multiplicative, different N channels can be
combined:

N
X(mn) = HX,-(mh)

If d; data events are observed, then this leads to a value X5 of the
test-statistics. CLs, is then given by:

CLs+b = Ps+b(X S Xobs)

Xobs dXs+b
= / o &

— 00

where dXs,p/dx is the p.d.f. distribution of the test-statistics X for
signal+background experiments.
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Exercises

Frequentists confidence levels

The Confidence Level CLg,, is then in the case of a N channel
couting experiment calculated as:

Si+bi( . i d,.’
CLS+b _ Z H e (SI + bl)

!
X(d))<X(d)) i=1 a!

Small values of CLgp, indicate poor compability with the s + b
hypothesis and favour the background-only hypothesis.

CL, is calculated likewise.
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5

signal yield s =0
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CLs

LEP combined SM Higgs limits
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CLs

LEP combined SM Higgs limits

LHWG Note/2002-01 ,Search for the Standard Model Higgs

Boson at LEP”
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Observed and expected behaviour of
the test-statistic —2In Q as a function
of the test mass my.

Limit determination Il
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LHC Higgs limits (2011, 7 TeV, 5 fb~
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CMS, L=19.5fb? s =8 Tev
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SUSY 2D limits
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Overview

@ Tools
m TLimit
m RooStat
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Alex Read, ,Presentation of search results: the CLs technique”, Journal of
Physics G: Nucl. Part. Phys. 28 p. 2693-2704 (2002).

Tom Junk, ,Confidence level computation for combining searches with small
statistics”, NIM A434, p. 435-443, (1999).
ROOT::TLimit

7

TFilex infile= new TFile("file.root","READ"); infile->cd();
TH1% sh=(THlx)infile->Get ("signal");

TH1% bh=(THl1x)infile->Get ("background");

TH1x* dh=(THl1*)infile->Get ("data");

TLimitDataSource * mydata = new TLimitDataSource (sh,bh,dh);
TConfidencelLevel * myconf =

TLimit::Computelimit (mydatasource,50000);

(
cout << " CLs < myconfidence->CLs () << "\n"
<< " CLsb : myconfidence->CLsb() << "\n"
<< " CLb myconfidence->CLb() << "\n"
<< "<CLs >:"<< myconfidence->GetExpectedCLs_b() <<"\n"

<< "<CLsb>:"<< myconfidence->GetExpectedCLsb_b() <<"\n"
<< "<CLb> :"<< myconfidence->GetExpectedCLb_b ()<< endl;

it determination Il hristian Autermann



CLs method

Alex Read, ,Presentation of search results: the CLs technique”, Journal of
Physics G: Nucl. Part. Phys. 28 p. 2693-2704 (2002).

Tom Junk, ,Confidence level computation for combining searches with small
statistics”, NIM A434, p. 435-443, (1999).

ROQOT::TLimit

e N

TFilex infile= new TFile("file.root","READ"); infile->cd();
TH1% sh=(THlx)infile->Get ("signal");

TH1% bh=(THl1x)infile->Get ("background");

TH1* dh=(THl1*)infile /Get("data ) B

TLimitDat B

TConfiden% can handle also systematlc uncertalntles‘

cout << " CLs :"<< myconfidence->CLs() << "\n"
<< " CLsb : myconfidence->CLsb() << "\n"
<< " CLb myconfidence->CLb() << "\n"

<< "<CLs >:"<< myconfidence->GetExpectedCLs_b() <<"\n"
< "<CLsb>:"<< myconfidence->GetExpectedCLsb_b () <<"\n"

< "<CLb> :"<< myconfidence->GetExpectedCLb_b ()<< endl;
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Tools Exercises
8 oe 0000

RooStat

RooStats is a project to create statistical tools for ROOT built on
top of RooFit and distributed in ROOT. It is a joint project
between the LHC experiments and the ROOT team. Included
since ROOT v5.22.

Detailed information with many nice tutorials and examples:
https://twiki.cern.ch/twiki/bin/view/RooStats/
WebHome
https://twiki.cern.ch/twiki/bin/view/RooStats/
TutorialsOctober2009

Core developers: K. Cranmer (ATLAS), Gregory Schott (CMS),
Wouter Verkerke (RooFit), Lorenzo Moneta (ROOT).
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Exercises

Overview

@ Exercises
m Task 3: Modified frequentist upper limit
m Task 4: Upper limit on measured negative signal yield:
Frequentist vs Bayesian
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Exercises
[ ]

Task 3: Modified frequentist upper limit

Modified frequentist (CLs) limits
Revisit the last item of task 2:
B fipkg = 3, Nops = 0
This time set a 90% upper limit using the modified frequentist approach:

CLs = CL(S + B)/CL(B) = 0.1

Note: the definitions are: ;
CL(B) = plbkg: Nobs) = > € Moo “29 ang
iSNobs -

CL(S + B)p(uvkg + tsigs Nobs) = %: o (Hokg-+iisig) (Hbkg sig). blg T4 sig)
"S obs
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ecisions and Tests i Exercises
0®00

Task 4: Frequentist vs Bayesian

After background subtraction, an experiment “observes” a yield of —2 £ 1 particles.
The uncertainty is assumed to be Gaussian. Determine an 90% upper limit w, for the
expectation value of the number of events using the

m Frequentist approach: taking the result at face value
Instruction: determine the 90% upper limit from

CL= / ax' — 10%.
Hlim
Hint: The solution can be read off from the CL curves for a Gaussian.

m Bayesian approach: the result has to be positive
Instruction: determine the 90% upper limit from

oo ( )2
J dx’ e a(x")
CL = Hiim — TR =] 10%
Jaxe—z

Hint: The 6(x’) can be ignored since only positive values of w, will solve the
equations. The solutions to both integrals can be read off from the CL curves for
a Gaussian.
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Appendix 1 - One sided Gaussian confidence levels

Gauss Function one side confidence level vs x
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Appendix 2 - Two sided Gaussian confidence levels

CL

Gauss Function two side confidence level vs x
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