Christian Autermann 24.03.2015 Limit determination II **Christian Autermann** 1/43 ### Contents # Yesterday - Confidence levels - Confidence level belt construction - Confidence intervals - Coverage ### Today - Hypotheses, decisions, and tests - Limit calculation - The CLs method Limit determination II Christian Autermann 2/43 # Overview - Decisions and Tests - Statistical hypotheses testing (Frequentist) - Significance - Signal and Background Hypotheses - Neyman-Pearson **Decisions and Tests** - CLs Limit determination II **Christian Autermann** 3/43 ### Interpretation of Data Often (not only in Physics) measured data has to be interpreted within a given theory. #### Therefore: Decisions and Tests - A hypothesis has to be defined (The Model) - Perhaps, parameters of the model are determined - Test the hypothesis with measurements Goal: Quantify the agreement between theory model and the measured data Methods: Statistical hypothesis testing, χ^2 -Test, Student's t-Test, Kolmogorov-Smirnov-Test, ... Limit determination II Christian Autermann 4/43 # The Null-Hypothesis Karl Popper: "Empirical theories are characterized by falsifiability. Science should adopt a methodology based on falsification, because no number of experiments can ever prove a theory, but a single experiment can contradict one." The **null-hypothesis** typically proposes a general or default position, and can be tested against an **alternative hypothesis**. If the data rejects the null-hypothesis, then one can conclude that the opposite is true. The null-hypothesis should be defined with great care, and before the experiment is started! Limit determination II Christian Autermann 5/43 # Binomial Example: Coin-toss Toss a random coin 10 times, it comes down head 7 times. - Null-hypothesis: The coin is fair. - Alternative hyposesis: The coin is biased. Limit determination II Christian Autermann 6/43 # Binomial Example: Coin-toss **Decisions and Tests** 00000000000 Toss a random coin 10 times, it comes down head 7 times. - Null-hypothesis: The coin is fair. - Alternative hyposesis: The coin is biased. $$P_{binomial}(0.5, 10, 7) = 0.12,$$ $P_{binomial}(0.5, 10, 8) = 0.044,$ $P_{binomial}(0.5, 10, 9) = 9.8 \cdot 10^{-3},$ $P_{binomial}(0.5, 10, 10) = 9.8 \cdot 10^{-4}$ The probability to get head up or head down seven or more times out of ten is $2 \times (12\% + 4\% + 1\% + 0.1\%) = 34.4\%$, that's not significant. Limit determination II 6/43 Christian Autermann 00000000000 Toss a random coin 10 times, it comes down head 7 times. - Null-hypothesis: The coin is fair. - Alternative hyposesis: The coin is biased towards heads. $$P_{binomial}(0.5, 10, 7) = 0.12,$$ $P_{binomial}(0.5, 10, 8) = 0.044,$ $P_{binomial}(0.5, 10, 9) = 9.8 \cdot 10^{-3},$ $P_{binomial}(0.5, 10, 10) = 9.8 \cdot 10^{-4}$ The probability to get **head up or head down** seven or more times out of ten is $2 \times (12\% + 4\% + 1\% + 0.1\%) = 34.4\%$, that's not significant. The probability to get **head up** seven or more times out of ten is 12% + 4% + 1% + 0.1% = 17.2%, that's hardly significant either! Limit determination II Christian Autermann 6/43 ### Binomial Example: Coin-toss **Decisions and Tests** 000000000 Toss a random coin 10 times, it comes down head 7 times. Null-hypothesis: The coin is fair. $$P_{binomial}(0.5, 10, 7) = 0.12,$$ $P_{binomial}(0.5, 10, 8) = 0.044,$ $P_{binomial}(0.5, 10, 9) = 9.8 \cdot 10^{-3},$ $P_{binomial}(0.5, 10, 10) = 9.8 \cdot 10^{-4}$ The probability to get **head up or head down** seven or more times out of ten is $2 \times (12\% + 4\% + 1\% + 0.1\%) = 34.4\%$, that's not significant. The probability to get **head up** seven or more times out of ten is 12% + 4% + 1% + 0.1% = 17.2%, that's hardly significant either! To show signs of bias at the 95% confidence level, the coin would need to come down at least 9 out of 10 times head or tails! Limit determination II Christian Autermann 6/43 # Example: Coin toss Memo to all teams playing Belgium in the World Cup this year: don't let them use their own coins for the toss. Mathematicians say the coins issued in the eurozone's administrative heartland are more likely to land heads up than ... " King Albert, who appears on Belgian coins, appears to be a bit of a lightweight, according to Polish mathematicians Tomasz Gliszczynski and Waclaw Zawadowski. The two professors and their students at the Podlaska Academy in Siedlce spun a Belgian one euro coin 250 times, and found it landed heads up 140 times. The cent coins proved even more likely to land heads up. "The euro is struck asymmetrically," Prof Gliszczynski, who teaches statistics, told Germany's Die Welt newspaper. 7/43 The Guardian, 4.1.2002 Limit determination II Christian Autermann # Example: Coin toss # Is that really significant? Null-hypothesis: 125 times head out of 250, p=0.5. Two ways to calculate the significance: - 1 Statistical uncert.: $\sigma = \sqrt{N \cdot p(1-p)} = 7.9$ Fluctuation: $s_{\alpha} = \frac{signal}{uncertainty} = \frac{140-125}{7.9} = 1.9$ - 2 By summing up the Binomial probabilites from $P_{binomial}(0.5, 250, 140)$ till $P_{binomial}(0.5, 250, 250)$. The double (single) sided significance that the coin is *not* biased (towards heads) is $\alpha \approx 6.6\%$ ($\alpha \approx 3.3\%$). Limit determination II Christian Autermann 8/ 43 # Example: Coin toss # Is that really significant? - The original "Die Welt" article states further, that the Professor has examined all types of 1-Euro and 2-Euro coins. → there are 2 × 15 different common national coins (excluding all rare designs). - The look-elsewhere effect has to be considered: - If "the experiment", i.e. tossing a coin 250 times is repeated 30 times, than it is not credible to quote only the one result with the largest difference! - After 30 experiments, a minimal p-value of any of these experiments of 1/30 = 3.3% is expected! - 5 The observed significance of 3.3% (6.6%) is actually very similar (less significant) as expected Limit determination II Christian Autermann 9/ 43 # Hypothesis testing # Hypothesis testing - The Null-hypothesis and the alternative hypothesis have to be clearly defined - ideally before the experiment is carried out! - Example 1: The Belgium 2-Euro coin is not biased. - Example 2: No type of 1-Euro or 2-Euro coins is biased. - Defining the hypotheses after looking at the outcome of the experiment is cheating (at least)! Limit determination II Christian Autermann 10/43 000000000000 - In particle-physics the "Null-hypothesis" is usually the expectation, that the observed data will follow the predictions of the Standard Model. - The Standard Model predicts the process cross-sections. With the integrated luminosity and the selection efficiency the background probability density function is determined. - The **test-statistic** is usually the event yield in a given selection. Limit determination II Christian Autermann 11/43 #### Particle physics: Signal and Background Hypotheses - In particle-physics the "Null-hypothesis" is usually the expectation, that the observed data will follow the predictions of the Standard Model. - The Standard Model predicts the process cross-sections. With the integrated luminosity and the selection efficiency the background probability density function is determined. - The **test-statistic** is usually the event yield in a given selection. #### Example: **Decisions and Tests** background expectation: $$b = 4$$ signal expectation: $$s = 11$$ observed data: $$d = 7$$ Limit determination II **Christian Autermann** #### Particle physics: Signal and Background Hypotheses - In particle-physics the "Null-hypothesis" is usually the expectation, that the observed data will follow the predictions of the Standard Model. - The Standard Model predicts the process cross-sections. With the integrated luminosity and the selection efficiency the background probability density function is determined. - The **test-statistic** is usually the event yield in a given selection. #### Example: **Decisions and Tests** background expectation: $$b = 4$$ signal expectation: $$s = 11$$ observed data: $$d = 7$$ Limit determination II Christian Autermann #### Particle physics: Signal and Background Hypotheses Limits - In particle-physics the "Null-hypothesis" is usually the expectation, that the observed data will follow the predictions of the Standard Model. - The Standard Model predicts the process cross-sections. With the integrated luminosity and the selection efficiency the background probability density function is determined. - The **test-statistic** is usually the event yield in a given selection. #### Example: background expectation: $$b = 4$$ signal expectation: observed data: $$d = 7$$ Limit determination II Christian Autermann #### Particle physics: Signal and Background Hypotheses - In particle-physics the "Null-hypothesis" is usually the expectation, that the observed data will follow the predictions of the Standard Model. - The Standard Model predicts the process cross-sections. With the integrated luminosity and the selection efficiency the background probability density function is determined. - The **test-statistic** is usually the event yield in a given selection. #### Example: **Decisions and Tests** background expectation: $$b=4$$ signal expectation: $$s = 11$$ observed data: $$d = 7$$ Limit determination II **Christian Autermann** #### What does it mean? - The probability (**p-value**) to reject the null-hypothesis H_0 , while H_0 is true, is $\int_{d}^{\infty} f(x|H_0) dx = \alpha < 1 CL_{\text{critical}}$ - Similarly, the probability to reject the alternative hypothesis H_1 if it's true is $\int_{-\infty}^{d} f(x|H_1) dx = \beta < 1 CL_{critical}$ - Usual choice: CL_{critical} = 95%. - Here: $\alpha = 11\%$, $\beta = 1.8\%$ #### Example: background expectation: $$b = 4$$ signal expectation: $$s = 11$$ observed data: Limit determination II Christian Autermann # Hypothesis testing # How to distinguish between hypotheses? - In general, there is no "observed data" defining the value of the test statistics x_d and therefore the probability to accept or to reject a hypothesis - In general we might be interested to find x_d such, that the null-hypothesis or the alternative hypothesis are accepted or rejected with certain efficiencies. Limit determination II Christian Autermann 12/43 If we regard two mutually exclusive hypotheses that are either true or false There are four possible outcomes: - Accepting a true hypothesis - Rejecting a wrong hypothesis - Rejecting a true hypothesis (Type I error) - Accepting a wrong hypothesis (Type II error) If α is the significance of the test, then Type I errors are bound to occur less than or equal to α : $$\int_{X}^{\infty} P_h(x) dx \leq \alpha$$ Limit determination II Christian Autermann 13/43 If we regard two mutually exclusive hypotheses that are either true or false There are four possible outcomes: - Accepting a true hypothesis - Rejecting a wrong hypothesis - Rejecting a true hypothesis (Type I error) - Accepting a wrong hypothesis (Type II error) The probability to mistakenly accept the hypothesis H_a is β , and $1 - \beta$ is the power of the test: $$\int_{-\infty}^{X} P_{a}(x) dx \leq \beta$$ Limit determination II **Christian Autermann** 13/43 0000000000000 If we regard two mutually exclusive hypotheses that are either true or false There are four possible outcomes: - Accepting a true hypothesis - Rejecting a wrong hypothesis - Rejecting a true hypothesis (Type I error) - Accepting a wrong hypothesis (Type II error) Both, α and β should be as small as possible, but there is a tradeoff between minimizing α and β . The relative importance of α or β depends on the problem! Example b-tagging: decide between b-jet and light-jet hypothesis. Limit determination II **Christian Autermann** 13/43 ### Example: Cow-fever epidemic Let's assume the really dangerous "cow-fever" disease results always in a fever of 39.7 C with a Gaussian spread of 0.2 C. Patients with normal flu only have temperature 39.2 ± 0.2 C and are 100 times more likely. Where to cut (fever-threshold for treating a patient ambulant or stationary) if we want a test-power of $1 - \beta = 90\%$? Limit determination II **Christian Autermann** 14/43 ### Example: Cow-fever epidemic **Decisions and Tests** 000000000000 Let's assume the really dangerous "cow-fever" disease results always in a fever of 39.7 C with a Gaussian spread of 0.2 C. Patients with normal flu only have temperature 39.2 \pm 0.2 C and are 100 times more likely. Where to cut (fever-threshold for treating a patient ambulant or stationary) if we want a test-power of $1 - \beta = 90\%$? Case 1: Accepting $\beta=10\%$ of normal flu patients, leads to the rejection of $\sim 15\%$ cow-fever patients (Type I error) and more than 92% beds are occupied by normal flu patients. Limit determination II Christian Autermann 14/43 000000000000 Let's assume the really dangerous "cow-fever" disease results always in a fever of 39.7 C with a Gaussian spread of 0.2 C. Patients with normal flu only have temperature 39.2 \pm 0.2 C and are 100 times more likely. Where to cut (fever-threshold for treating a patient ambulant or stationary) if we want a test-significance of $\alpha = 5\%$? Case 2: Accepting 95% of cow-fever patients (significance $\alpha = 5\%$) by cutting at 39.37 C leads to a Type II error (accepted normal flu patients) of $\beta \approx 80\%$. Now, more than 98.8% beds are occupied by normal flu patients. Limit determination II **Christian Autermann** 14/43 ### Example: Cow-fever epidemic Let's assume the really dangerous "cow-fever" disease results always in a fever of 39.7 C with a Gaussian spread of 0.2 C. Patients with normal flu only have temperature 39.2 \pm 0.2 C and are 100 times more likely. Where to cut (fever-threshold for treating a patient ambulant or stationary) if we want a test-significance of $\alpha=5\%$? In reality the clinic will probably choose α and β according to other constraints, e.g. the number of available beds, etc. Limit determination II Christian Autermann 14/43 Exercises The best test, for which both α and β are small as possible is called a **Neyman-Pearson test**: # The Neyman-Pearson lemma When performing a hypothesis test between two hypotheses H_h and H_a , then the **likelihood-ratio test** which rejects H_a in favour of H_h when $$Q = \frac{L_{H_h}(x)}{L_{H_2}(x)} \ge Q_0$$ for a given significance α is the **most powerful test-statistic** to minimize both α and β . - Both hypothesis H_h and H_a have to be explicitly defined and have to be simple. - The acceptance region giving the highest power 1β for a given significance α is the region comprised by the above (in)equation. - In the one-dimensional case, a cut on x for a specific α (e.g. b-tag efficiency) determines β (and therefore the purity). Limit determination II Christian Autermann 15/43 - Decisions and Tests - Limits - Event yields - CLs - Tools - Exercises Limit determination II Christian Autermann 16/43 # Limits ttp://pix.echtlustig.com Limit determination II Christian Autermann 17/ 43 #### Limit definition ■ The **observed limit** on the signal event-yield at $CL_{s+b} = 95\%$ is defined as the s, for which $$\beta = \int_{-\infty}^{d} Q(x|H_1)dx$$ $$\leq 1 - CL_{s+b}.$$ ■ In this example $Q(x|H_1)$ is the Poisson p.d.f. with a mean $\lambda = s + b$. #### Example: background expectation: $$b = 4$$ observed data: $$d = 7$$ limit on s + b at 95% C.L.: $$s + b = 12.5$$ Limit determination II Christian Autermann background expectation: b = 4 observed data: d = 7 **Decisions and Tests** limit on s + b at 95% C.L.: s + b = 12.5 Limits 00000 PDF reader with Java (e.g. Adobe Acrobat) necessary for animation Limit determination II Christian Autermann 19/43 - The test-statistic $Q(x|H_1)$ was in the example a Poisson pdf modelling the under the H_1 hypothesis expected statistical uncertainties of the measurement (the data). - The test-statistics $Q(x|H_1)$ may incorporate also systematical uncertainties on the background σ_b and on the signal estimation σ_s , e.g. $$Q(x|H_1) = Poisson(\lambda_{s+b}) \otimes Gauss(b, \sigma_b) \otimes Gauss(s, \sigma_s)$$ - In general, $Q(x|H_0)$ and $Q(x|H_1)$ may be defined by a likelihood that distinguishes both hypotheses - Essentially a one-dimensional non-linear minimization problem, numerical solution guite time consuming - In this case, the agreement of the measured data with the background-only expectation, i.e. the null-hypothesis H₀, is not directly considered. - The limit on the signal event yield does not depend on the expected signal event yield! Limit determination II Christian Autermann 20/43 #### Multi-channel limits **Decisions and Tests** Since likelihood functions are multiplicative, multiple statistically exclusive channels i.e. from different exclusive selections or histogram bins can be easily combined: $$L(x) = \prod_{b=1}^{\mathsf{bins}} L_b(x)$$ where the $L_b(x)$ are the test-statistics of the individual single-bin counting experiments. ■ Systematic uncertainties affecting the estimation of the background or signal prediction σ_i^b and σ_i^s may be correlated among different bins. This can be considered when drawing pseudo-data from the hypotheses test-statistics. Limit determination II Christian Autermann 21/43 - Expected limits are usually defined as the 50% quantile, i.e. the median, of the distribution of observed limits for a number of pseudo-experiments; where the pseudo-observations are drawn according to the background-only null-hypothesis test-statistic H₀. - The $\pm 1\sigma$ uncertainties on the expected limit are equivilantly the 16% and 84% quantiles. Limit determination II Christian Autermann 22/ 43 # Overview - CLs - Modified frequentist approach - LEP Higgs limit - LHC Higgs limits - LHC SUSY limits - Tools Limit determination II **Christian Autermann** 23/43 24/43 #### Limit definition An **observed limit** on the signal event-yield at $CL_{s+b} = 95\%$ can be defined as the s, for which $$\beta = \sum_{d=0}^{d_{\text{obs}}} \frac{e^{s+b}(s+b)^d}{d!}$$ $$\leq 1 - CL_{s+b}.$$ #### Example: background expectation: $$b = 4$$ observed data: $$d = 7$$ limit on s + b at 95% C.L.: $$s + b = 12.5$$ Limit determination II Christian Autermann CLs is a frequentist like statistical analysis which avoids excluding or discovering signals, that the analysis is not really sensitive to. The null-hypothesis is that there is no signal and the alternate hypothesis that it exists. Limit determination II Christian Autermann 25/43 #### The modified Frequentist procedure (CLs) CLs is a frequentist like statistical analysis which avoids excluding or discovering signals, that the analysis is not really sensitive to. The null-hypothesis is that there is no signal and the alternate hypothesis that it exists. Example: Observing less than the mean expected background events could be accommodated best with a negative signal cross-section. The exclusion may be so strong that even zero signal is excluded at a certain confidence level. Limit determination II Christian Autermann 25/43 CLs is a frequentist like statistical analysis which avoids excluding or discovering signals, that the analysis is not really sensitive to. The null-hypothesis is that there is no signal and the alternate hypothesis that it exists. Example: Observing less than the mean expected background events could be accommodated best with a negative signal cross-section. The exclusion may be so strong that even zero signal is excluded at a certain confidence level. This is a perfectly valid result in terms of statistics, but it says more about fluctuations of the (known) background, than about the hypothetical signal we are interested in! Limit determination II Christian Autermann 25/43 CLs is a frequentist like statistical analysis which avoids excluding or discovering signals, that the analysis is not really sensitive to. The null-hypothesis is that there is no signal and the alternate hypothesis that it exists. Example: Observing less than the mean expected background events could be accommodated best with a negative signal cross-section. The exclusion may be so strong that even zero signal is excluded at a certain confidence level. This is a perfectly valid result in terms of statistics, but it says more about fluctuations of the (known) background, than about the hypothetical signal we are interested in! → Normalize the confidence level in the signal+background hypothesis CL_{s+h} to the confidence level for the background-only hypothesis CL_h . Limit determination II Christian Autermann 25/43 #### Introducing CLs method **Decisions and Tests** The modified frequentist re-normalization is simply: $$CL_s = \frac{CL_{s+b}}{CL_b}$$ CL_s gives an approximation to the confidence in the signal hypothesis one might have obtained if the experiment had been performed in the complete absence of background. CL_s tries to reduce the dependency on the uncertainty due to the background. Strictly, CL_s is not a confidence, but a ratio of confidences. - Consequentially, the false exclusion rate is generally less than the nominal rate CL. - it increases the "coverage" of the analysis, - it gives a consistent performance compared to CL_{s+b} at small expected signal but different background rates. Limit determination II Christian Autermann 26/43 #### CLs: Single counting experiment Decisions and Tests For a counting experiment with a single channel, CL_s takes the following form: $$CL_s = \frac{CL_{s+b}}{CL_b}$$ $$= \frac{Poisson(s+b, d_{obs})}{Poisson(b, d_{obs})}$$ where s + b (or b) come from the Poisson distributions of number of events for the signal+background (background-only) hypotheses, and d_{obs} is the number of events observed. The modified frequentist signal exclusion confidence becomes: $$CL = 1 - \frac{\sum_{n=0}^{d_{obs}} \frac{e^{-(b+s)}(b+s)^n}{n!}}{\sum_{n=0}^{d_{obs}} \frac{e^{-bb}}{n!}}$$ Which is (accidentally!) similar to the result we obtained by computing the constrained Bayesian integral with a flat prior. Limit determination II Christian Autermann 27/43 Using a likelihood-ratio as test-statistic to compute CL_{s+b} and CL_b : $$X = \frac{\mathsf{Poisson}(s(m_H) + b, d_{obs})}{\mathsf{Poisson}(b, d_{obs})}$$ Where the expected signal s depends e.g. on a model parameter (e.g. the Higgs mass m_H). Likelihoods are multiplicative, different N channels can be combined: $$X(m_h) = \prod_{i}^{N} X_i(m_h)$$ If d_i data events are observed, then this leads to a value X_{obs} of the test-statistics. CL_{s+b} is then given by: $$CL_{s+b} = P_{s+b}(X \le X_{obs})$$ $$= \int_{-\infty}^{X_{obs}} \frac{dX_{s+b}}{dx} dx$$ where dX_{s+b}/dx is the p.d.f. distribution of the test-statistics X for signal+background experiments. Limit determination II Christian Autermann 28/43 #### Frequentists confidence levels **Decisions and Tests** The Confidence Level CL_{s+b} is then in the case of a N channel couting experiment calculated as: $$CL_{s+b} = \sum_{X(d_i') \leq X(d_i)} \prod_{i=1}^{N} \frac{e^{s_i + b_i} (s_i + b_i)^{d_i'}}{d_i'!}$$ Small values of CL_{s+b} indicate poor compability with the s+bhypothesis and favour the background-only hypothesis. CL_b is calculated likewise. Limit determination II Christian Autermann 29/43 CLs 00000000000 Limits PDF reader with Java (e.g. Adobe Acrobat) necessary for animation **Decisions and Tests** Tools **Exercises** ## LEP combined SM Higgs limits Probability density functions corresponding to fixed test-masses for the b and s+b hypotheses. The observed test-statistic $-2 \ln Q = Q_{obs}$ is indicated by the vertical line. The shaded areas refer to $1 - CL_b$ and CL_{s+b} . Limit determination II Christian Autermann 31/43 ## LEP combined SM Higgs limits # LHWG Note/2002-01 "Search for the Standard Model Higgs Boson at LEP" Observed and expected behaviour of the test-statistic $-2 \ln Q$ as a function of the test mass m_H . Confidence level CL_s for the signal+background hypothesis. The intersection of the observed limit with the horizontal $\text{CL}_s = 0.05$ line determines the 95% CL lower mass limit. Limit determination II Christian Autermann 32/43 ## LHC Higgs limits (2011, 7 TeV, 5 fb $^{-1}$) Limit determination II Christian Autermann 33/43 ## LHC Higgs: measurement Limit determination II Christian Autermann 34/43 ## SUSY 2D limits Limit determination II Christian Autermann 35/43 - Decisions and Tests - Limits - CLs - Tools - TLimit - RooStat - Exercises Limit determination II Christian Autermann 36/43 ### CLs method Alex Read, "Presentation of search results: the CLs technique", Journal of Physics G: Nucl. Part. Phys. **28** p. 2693-2704 (2002). Tom Junk, "Confidence level computation for combining searches with small statistics", NIM **A434**, p. 435-443, (1999). #### ROOT::TLimit **Decisions and Tests** Limit determination II Christian Autermann 37/43 #### CLs method Alex Read, "Presentation of search results: the CLs technique", Journal of Physics G: Nucl. Part. Phys. **28** p. 2693-2704 (2002). Tom Junk, "Confidence level computation for combining searches with small statistics", NIM **A434**, p. 435-443, (1999). #### ROOT::TLimit Limit determination II Christian Autermann 37/43 ## **Root Statistic Tools** #### RooStat RooStats is a project to create statistical tools for ROOT built on top of RooFit and distributed in ROOT. It is a joint project between the LHC experiments and the ROOT team. Included since ROOT v5.22. Detailed information with many nice tutorials and examples: https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome https://twiki.cern.ch/twiki/bin/view/RooStats/ TutorialsOctober2009 Core developers: K. Cranmer (ATLAS), Gregory Schott (CMS), Wouter Verkerke (RooFit), Lorenzo Moneta (ROOT). Limit determination II Christian Autermann 38/43 ## Overview - CLs - Exercises - Task 3: Modified frequentist upper limit - Task 4: Upper limit on measured negative signal yield: Frequentist vs Bayesian Limit determination II **Christian Autermann** 39/43 ## Task 3: Modified frequentist upper limit #### Modified frequentist (CLs) limits Revisit the last item of task 2: $$\mu_{bka} = 3, N_{obs} = 0$$ This time set a 90% upper limit using the modified frequentist approach: $$CL_s = CL(S+B)/CL(B) = 0.1$$ Note: the definitions are: $$\mathit{CL}(B) = p(\mu_{bkg}, N_{obs}) = \sum\limits_{i \leq N_{obs}} e^{-\mu_{bkg}} rac{\mu_{bkg}^i}{i!}$$ and $$\mathit{CL}(S+B)p(\mu_{\mathit{bkg}} + \mu_{\mathit{sig}}, N_{\mathit{obs}}) = \sum_{i \leq N_{\mathit{obs}}} e^{-(\mu_{\mathit{bkg}} + \mu_{\mathit{sig}})} \frac{(\mu_{\mathit{bkg}} + \mu_{\mathit{sig}})^i}{i!}$$ Limit determination II Christian Autermann 40/43 #### Task 4: Frequentist vs Bayesian **Decisions and Tests** After background subtraction, an experiment "observes" a yield of -2 ± 1 particles. The uncertainty is assumed to be Gaussian. Determine an 90% upper limit $\mu_{\it lim}$ for the expectation value of the number of events using the Frequentist approach: taking the result at face value Instruction: determine the 90% upper limit from $$CL = \int_{\mu_{lim}}^{\infty} dx' \frac{1}{2\pi} e^{\frac{-(x'+2)^2}{2}} = 10\%.$$ Hint: The solution can be read off from the CL curves for a Gaussian. Bayesian approach: the result has to be positive Instruction: determine the 90% upper limit from $$CL = \frac{\int_{\mu_{lim}}^{\infty} dx' \frac{1}{2\pi} e^{\frac{-(x'+2)^2}{2}} \theta(x')}{\int_{0}^{\infty} dx' \frac{1}{2\pi} e^{\frac{-(x'+2)^2}{2}}} = 10\%.$$ Hint: The $\theta(x')$ can be ignored since only positive values of μ_{lim} will solve the equations. The solutions to both integrals can be read off from the CL curves for a Gaussian. Limit determination II Christian Autermann 41/43 ## Appendix 1 - One sided Gaussian confidence levels $$\mathsf{CL}(x) = \int_{x}^{\infty} dx' \, \frac{1}{\sqrt{2\pi}} e^{-x'^2/2}$$ #### Gauss Function one side confidence level vs x Limit determination II Christian Autermann 42/43 ## Appendix 2 - Two sided Gaussian confidence levels $$CL(x) = 2 \int_{x}^{\infty} dx' \frac{1}{\sqrt{2\pi}} e^{-x'^{2}/2}$$ #### Gauss Function two side confidence level vs x Limit determination II Christian Autermann 43/43