Exercises to "Introduction to Effective Field Theories"

Björn Olaf Lange Danny van Dyk

Precision measurements in top-quark and bottom-quark physics September 24th 2015

RG-improved perturbation theory

Top mass from radiative B decays

Power Counting in NRQCD

RG-improved perturbation theory

aim

demonstrate the difference between n-loop order (fixed-order PT) and NⁿLO (RG-improved PT) in perturbative calculations

setup

consider a perturbative function $C(m, \mu)$, with a double expansion in $a \equiv \alpha_s(\mu)/(4\pi)$ and $L \equiv \ln(\mu/m)$:

$$C(m,\mu) = \sum_{k=0}^{\infty} a^k \sum_{l=0}^{k} c_{kl} L^l$$

make expansion a bit more transparent:

	power c	of L decr.	\rightarrow	
incr.				c_{00}
of a			aLc_{11}	ac_{10}
ower		$a^2 L^2 c_{22}$	a^2Lc_{21}	a^2c_{20}
jq ↑	$a^{3}L^{3}c_{33}$	$a^3 L^2 c_{32}$	a^3Lc_{31}	a^3c_{30}
				÷

reminder: explicit calculation of coefficients comes with as many loops as the power of a!

problem: convergence of expansion in *aL* can be *very slow*

Renormalization Group Equation (RGE) to the rescue!

$$\mu \frac{\mathrm{d}C(m,\mu)}{\mathrm{d}\mu} = \gamma(\mu)C(m,\mu) \tag{RGE}$$

where the anomalous dimension only depends on $\boldsymbol{\mu}$ via the strong coupling:

$$\gamma(\mu) = \sum_{k=0}^{\infty} a^{k+1} \gamma_k = a \gamma_0 + a^2 \gamma_1 + \dots$$

replace left-hand side with

$$\mu \frac{\mathrm{d}C}{\mathrm{d}\mu} = \mu \frac{\partial C}{\partial \mu} + \mu \frac{\partial a}{\partial \mu} \frac{\partial C}{\partial a} = \frac{\partial C}{\partial L} + \beta \frac{\partial C}{\partial a}$$

• use that β has an expansion in a:

$$\mu \frac{\partial a}{\partial \mu} = \beta(\mu) = \sum_{k=0}^{\infty} a^{k+2} \beta_k = a^2 \beta_0 + a^3 \beta_1 + \dots$$

• expand both sides in a and L

expansion of left-hand side of (RGE)

 ac_{11}

$$a^{2}L(2c_{22} + c_{11}\beta_{0})$$
 $a^{2}(c_{21} + c_{10}\beta_{0})$

 $a^{3}L^{2}(3c_{33} + 2c_{22}\beta_{0})) \qquad a^{3}L(2c_{32} + 2c_{21}\beta_{0} + c_{11}\beta_{1}) \qquad a^{3}(c_{31} + 2c_{20}\beta_{0} + c_{10}\beta_{1})$

expansion of right-hand side of (RGE)

 $ac_{00}\gamma_0$

$$a^{2}Lc_{11}\gamma_{0} \qquad a^{2}(c_{10}\gamma_{0} + c_{00}\gamma_{1})$$
$$a^{3}L^{2}c_{22}\gamma_{0} \qquad a^{3}L(c_{21}\gamma_{0} + c_{11}\gamma_{1}) \qquad a^{3}(c_{20}\gamma_{0} + c_{10}\gamma_{1} + c_{00}\gamma_{2})$$

coefficients c_{kk} of the leading-logarithm = LO order can be read off:

coefficients c_{kk} of the leading-logarithm = LO order can be read off:

 $c_{11} = c_{00}\gamma_0$

expansion of left-hand side of (RGE)

$$\begin{array}{c} a^{2}L(2c_{22}+c_{11}\beta_{0}) & a^{2}(c_{21}+c_{10}\beta_{0}) \\ a^{3}L^{2}(3c_{33}+2c_{22}\beta_{0})) & a^{3}L(2c_{32}+2c_{21}\beta_{0}+c_{11}\beta_{1}) & a^{3}(c_{31}+2c_{20}\beta_{0}+c_{10}\beta_{1}) \end{array}$$

expansion of right-hand side of (RGE)

 ac_{11}

aconvo

coefficients c_{kk} of the leading-logarithm = LO order can be read off:

$$c_{11} = c_{00}\gamma_0$$

$$c_{22} = \frac{1}{2}c_{11}(\gamma_0 - \beta_0) = \frac{1}{2}c_{00}\gamma_0(\gamma_0 - \beta_0)$$

expansion of left-hand side of (RGE)

 ac_{11}

$$a^{2}L(2c_{22} + c_{11}\beta_{0})$$
 $a^{2}(c_{21} + c_{10}\beta_{0})$

 $a^{3}L(2c_{32} + 2c_{21}\beta_{0} + c_{11}\beta_{1}) \qquad a^{3}(c_{31} + 2c_{20}\beta_{0} + c_{10}\beta_{1})$

expansion of right-hand side of (RGE)

 $ac_{00}\gamma_0$

$$a^{2}Lc_{11}\gamma_{0} \qquad a^{2}(c_{10}\gamma_{0} + c_{00}\gamma_{1})$$
$$a^{3}L(c_{21}\gamma_{0} + c_{11}\gamma_{1}) \qquad a^{3}(c_{20}\gamma_{0} + c_{10}\gamma_{1} + c_{00}\gamma_{2})$$

$$a^3 L^2 c_{22} \gamma_0$$

 $a^{3}L^{2}(3c_{33}+2c_{22}\beta_{0}))$

coefficients c_{kk} of the leading-logarithm = LO order can be read off:

$$c_{11} = c_{00}\gamma_0$$

$$c_{22} = \frac{1}{2}c_{11}(\gamma_0 - \beta_0) = \frac{1}{2}c_{00}\gamma_0(\gamma_0 - \beta_0)$$

$$c_{33} = \frac{1}{3}c_{22}(\gamma_0 - 2\beta_0) = \frac{1}{6}c_{00}\gamma_0(\gamma_0 - \beta_0)(\gamma_0 - 2\beta_0)$$

coefficients c_{kk} of the leading-logarithm = LO order can be read off:

$$c_{11} = c_{00}\gamma_0$$

$$c_{22} = \frac{1}{2}c_{11}(\gamma_0 - \beta_0) = \frac{1}{2}c_{00}\gamma_0(\gamma_0 - \beta_0)$$

$$c_{33} = \frac{1}{3}c_{22}(\gamma_0 - 2\beta_0) = \frac{1}{6}c_{00}\gamma_0(\gamma_0 - \beta_0)(\gamma_0 - 2\beta_0)$$

needs only three ingredients:

- c₀₀ from tree-level matching,
- γ₀ from a C-specific one-loop calculation, and
- β_0 from a universal one-loop calculation

expansion of left-hand side of (RGE)

$$a^{2}L(2c_{22} + c_{11}\beta_{0}) \qquad a^{2}L(2c_{32} + 2c_{21}\beta_{0} + c_{11}\beta_{1}) \qquad a^{3}(c_{31} + 2c_{20}\beta_{0} + c_{10}\beta_{1})$$

expansion of right-hand side of (RGE)

coefficients $c_{k(k-1)}$ of the next-to-leading logarithms:

 $c_{21} = c_{10}(\gamma_0 - \beta_0) + c_{00}\gamma_1$

expansion of left-hand side of (RGE)

 ac_{11}

$$\frac{a^{2}L(2c_{22}+c_{11}\beta_{0})}{a^{3}L(2c_{32}+2c_{21}\beta_{0}+c_{11}\beta_{1})} \qquad a^{2}(c_{21}+c_{10}\beta_{0}) \\
a^{3}(c_{31}+2c_{20}\beta_{0}+c_{10}\beta_{1})$$

 α

2 7 10

$$a^{3}L^{2}c_{22}\gamma_{0} \qquad \qquad a^{2}Lc_{11}\gamma_{0} \qquad a^{2}(c_{10}\gamma_{0} + c_{00}\gamma_{1}) \\ a^{3}L(c_{21}\gamma_{0} + c_{11}\gamma_{1}) \qquad a^{3}(c_{20}\gamma_{0} + c_{10}\gamma_{1} + c_{00}\gamma_{2})$$

 $a^{3}L^{2}(3c_{33}+2c_{22}\beta_{0}))$

coefficients $c_{k(k-1)}$ of the next-to-leading logarithms:

$$c_{21} = c_{10}(\gamma_0 - \beta_0) + c_{00}\gamma_1$$

$$c_{32} = \frac{1}{2} [c_{21}(\gamma_0 - 2\beta_0) + c_{11}(\gamma_1 - \beta_1)]$$

$$= \frac{1}{2} [c_{00}(\gamma_1(\gamma_0 - 2\beta_0) + \gamma_0(\gamma_1 - \beta_1)) + c_{10}(\gamma_0 - \beta_0)(\gamma_0 - 2\beta_0)]$$

coefficients $c_{k(k-1)}$ of the next-to-leading logarithms:

$$c_{21} = c_{10}(\gamma_0 - \beta_0) + c_{00}\gamma_1$$

$$c_{32} = \frac{1}{2} [c_{21}(\gamma_0 - 2\beta_0) + c_{11}(\gamma_1 - \beta_1)]$$

$$= \frac{1}{2} [c_{00}(\gamma_1(\gamma_0 - 2\beta_0) + \gamma_0(\gamma_1 - \beta_1)) + c_{10}(\gamma_0 - \beta_0)(\gamma_0 - 2\beta_0)]$$

needs three additional ingredients:

- c₁₀ from one-loop matching,
- γ_1 from a C-specific two-loop calculation, and
- β_1 from a universal two-loop calculation

conclusion

- the RGE implies a very useful pattern in the construction of the N^mLO coefficients
 - LO needs only tree-level matching, and one-loop anomalous dimension and β-function
 - NLO needs only one-loop matching, and two-loop anomalous dimension and β-function
 - ٠.. 🔸
- this suggests a solution to the RGE that resums all leading logarithms, i.e.: when expanded in *a* and *L*, this solution generates the same coefficients *c*_{kk} as before, but includes all those terms
 - this solution can be constructed from only c_{00} , γ_0 and β_0
 - the game can be continued to next-to-leading logarithms and so on...

Top mass from radiative B decays

aim

assuming the Standard Model (SM) is correct, extract the value of the top-quark mass from radiative *B* decays (e.g. $\bar{B} \rightarrow X_s \gamma$)

setup

for the sake of simplicity, we only consider the short-distance electroweak contribution to this decay, which is encoded in the Wilson coefficient C_7 of the electroweak effective Hamiltonian

$$\mathcal{H}_{b\to s}^{\text{eff}} \supset -\frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e}{8\pi^2} C_7 m_b [\bar{s}\sigma_{\mu\nu}(1+\gamma_5)b] F^{\mu\nu}$$

Consider that model-independently $|C_7|$ has been constrained to $|C_7| = 0.33 \pm 0.05$.

The matching condition for C_7 yields at the electroweak scale (to leading order)

$$C_7(\mu = M_W, x_t) = \frac{3x_t^3 - 2x_t^2}{4(x_t - 1)^4} \ln(x_t) - \frac{8x_t^3 + 5x_t^2 - 7x_t}{24(x_t - 1)^3}$$

where $x_t \equiv m_t/M_W$

We can use this for a fixed-order evaluation, and compare with the experimental constraint.

However, there is also the RG-improved result, which cannot be displayed analytically.

It is obtained from solving the matrix-valued RG equation

$$\mu \frac{\mathrm{d}C_i}{\mathrm{d}\mu} = -\gamma_{ji}C_j$$

order by order. The anomalous dimension is matrix-valued and non-diagonal! This means that $C_7(\mu = m_b)$ contains contributions from other Wilson coefficients than C_7 at the high scale $\mu \simeq M_W$. The resummed result is known up to N²LO in QCD.

This means that coefficients other than $C_7(\mu = M_W)$ also contribute to $C_7(\mu = m_b)!$

We can numerically evaluate this using publicly available codes. I will be using EOS:

http://project.het.physik.tu-dortmund.de/eos

conclusion

- fixed-order result has strong dependence on m_t at leading order
- resummed result has only very weak dependence on m_t
- in the end, other quantities than C_7 are better suited to indirectly constrain m_t , e.g. $B \bar{B}$ mixing observables

Power Counting in NRQCD

aim

Illustrate that potential modes needs to be resummed in top-pair production for $v \ll 1$

setup

top-pair production at e^+e^- invariant mass $\sqrt{s},$ close to the production threshold:

- velocity v of the top in $t\bar{t}$ CoM frame is small $v\ll 1$
- energy component of the top four momentum in tt CoM frame

$$p^{0} = \frac{\sqrt{s}}{2} = M_{t} + \frac{M_{t}v^{2}}{2} + \mathcal{O}(v^{4})$$

• therefore kinetic energy *E* of the top pair in the CoM frame is

$$E = 2p^0 - 2M_t = M_t v^2 + \mathcal{O}(v^4)$$

reminder: each new rung with momentum k_n brings along

• one massless propagator:
$$\frac{1}{k_n^2}$$

reminder: each new rung with momentum k_n brings along

- one massless propagator: $\frac{1}{k_r^2}$
- two top propagators: $\frac{1}{(p+k_n)^2 M_t^2}$

reminder: each new rung with momentum k_n brings along

- one massless propagator: $\frac{1}{k^2}$
- two top propagators: $\frac{1}{(p+k_n)^2 M_t^2}$

• two powers of the strong coupling: $\alpha_s \sim g_s^2$

reminder: each new rung with momentum k_n brings along

- one massless propagator: $\frac{1}{k^2}$
- two top propagators: $\frac{1}{(p+k_n)^2 M_t^2}$
- two powers of the strong coupling: $\alpha_s \sim g_s^2$
- the integration measure for the loop momentum k_n: d⁴k_n

hard modes

loop momentum: $k^0 \sim M_t$, $\vec{k} \sim M_t$ heavy-quark momentum: $(p + k_n)^{\mu} = (\frac{E}{2} + M_t + k^0, \vec{k})$

massless propagator:

$$\frac{1}{k^2} = \frac{1}{(k^0)^2 - (\vec{k})^2} = \frac{1}{M_t^2} \times \mathcal{O}\left(v^0\right)$$

inverse of the top propagator:

$$(p+k)^{2} - M_{t}^{2} = \frac{E^{2}}{4} + (k^{0})^{2} + EM_{t} + Ek^{0} + 2M_{t}k^{0} - \vec{k}^{2}$$

= $\mathcal{O}(v^{4}) + \mathcal{O}(v^{0}) + \mathcal{O}(v^{2}) + \mathcal{O}(v^{2}) + \mathcal{O}(v^{0}) + \mathcal{O}(v^{0})$
= $\mathcal{O}(v^{0})$

integration measure:

$$\mathrm{d}^{4}k = \mathrm{d}k^{0} \times \mathrm{d}^{3}\vec{k} = \mathcal{O}\left(v^{0}\right) \times [\mathcal{O}\left(v^{0}\right)]^{3} = \mathcal{O}\left(v^{0}\right)$$

total contribution = $\alpha_s \times$ massless prop. \times top prop.² \times int. measure

mode	massless propagator	top prop- agator	integration measure	total contribution
hard	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$

soft modes

loop momentum: $k^0 \sim M_t v$, $\vec{k} \sim M_t v$ heavy-quark momentum: $(p + k_n)^{\mu} = (\frac{E}{2} + M_t + k^0, \vec{k})$

massless propagator:

$$\frac{1}{k^2} = \frac{1}{(k^0)^2 - (\vec{k})^2} = \frac{1}{M_t^2} \times \mathcal{O}\left(v^{-2}\right)$$

inverse of the top propagator:

$$(p+k)^{2} - M_{t}^{2} = \frac{E^{2}}{4} + (k^{0})^{2} + EM_{t} + Ek^{0} + 2M_{t}k^{0} - \vec{k}^{2}$$

= $\mathcal{O}(v^{4}) + \mathcal{O}(v^{2}) + \mathcal{O}(v^{2}) + \mathcal{O}(v^{3}) + \mathcal{O}(v^{1}) + \mathcal{O}(v^{2})$
= $\mathcal{O}(v^{1})$

integration measure:

$$\mathrm{d}^{4}k = \mathrm{d}k^{0} \times \mathrm{d}^{3}\vec{k} = \mathcal{O}\left(v^{1}\right) \times [\mathcal{O}\left(v^{1}\right)]^{3} = \mathcal{O}\left(v^{4}\right)$$

total contribution = $\alpha_s \times$ massless prop. \times top prop.² \times int. measure

mode	massless propagator	top prop- agator	integration measure	total contribution
hard	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$
soft	$\mathcal{O}\left(v^{-2} ight)$	$\mathcal{O}\left(v^{-1} ight)$	$\mathcal{O}\left(v^4 ight)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$

ultrasoft modes

loop momentum: $k^0 \sim M_t v^2$, $\vec{k} \sim M_t v^2$ heavy-quark momentum: $(p + k_n)^{\mu} = (\frac{E}{2} + M_t + k^0, \vec{k})$

massless propagator:

$$\frac{1}{k^2} = \frac{1}{(k^0)^2 - (\vec{k})^2} = \frac{1}{M_t^2} \times \mathcal{O}\left(v^{-4}\right)$$

inverse of the top propagator:

$$(p+k)^{2} - M_{t}^{2} = \frac{E^{2}}{4} + (k^{0})^{2} + EM_{t} + Ek^{0} + 2M_{t}k^{0} - \vec{k}^{2}$$

= $\mathcal{O}(v^{4}) + \mathcal{O}(v^{4}) + \mathcal{O}(v^{2}) + \mathcal{O}(v^{4}) + \mathcal{O}(v^{2}) + \mathcal{O}(v^{4})$
= $\mathcal{O}(v^{2})$

integration measure:

$$\mathrm{d}^{4}k = \mathrm{d}k^{0} \times \mathrm{d}^{3}\vec{k} = \mathcal{O}\left(v^{2}\right) \times [\mathcal{O}\left(v^{2}\right)]^{3} = \mathcal{O}\left(v^{8}\right)$$

total contribution = $\alpha_s \times$ massless prop. \times top prop.² \times int. measure

mode	massless propagator	top prop- agator	integration measure	total contribution
hard	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$
soft	$\mathcal{O}\left(v^{-2} ight)$	$\mathcal{O}\left(v^{-1} ight)$	$\mathcal{O}\left(v^4 ight)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$
ultrasoft	$\mathcal{O}\left(v^{-4} ight)$	$\mathcal{O}\left(v^{-2} ight)$	$\mathcal{O}\left(v^{8} ight)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$

potential modes

loop momentum: $k^0 \sim M_t v^2$, $\vec{k} \sim M_t v$ heavy-quark momentum: $(p + k_n)^{\mu} = (\frac{E}{2} + M_t + k^0, \vec{k})$

inverse of the massless propagator:

$$k^{2} = (k^{0})^{2} - (\vec{k})^{2} = \mathcal{O}(v^{4}) + \mathcal{O}(v^{2}) = \mathcal{O}(v^{2})$$

inverse of the top propagator:

$$(p+k)^{2} - M_{t}^{2} = \frac{E^{2}}{4} + (k^{0})^{2} + EM_{t} + Ek^{0} + 2M_{t}k^{0} - \vec{k}^{2}$$

= $\mathcal{O}(v^{4}) + \mathcal{O}(v^{4}) + \mathcal{O}(v^{2}) + \mathcal{O}(v^{4}) + \mathcal{O}(v^{2}) + \mathcal{O}(v^{2})$
= $\mathcal{O}(v^{2})$

integration measure:

$$\mathrm{d}^{4}k = \mathrm{d}k^{0} \times \mathrm{d}^{3}\vec{k} = \mathcal{O}\left(v^{2}\right) \times [\mathcal{O}\left(v^{1}\right)]^{3} = \mathcal{O}\left(v^{5}\right)$$

total contribution = $\alpha_s \times$ massless prop. \times top prop.² \times int. measure

mode	massless propagator	top prop- agator	integration measure	total contribution
hard	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$
soft	$\mathcal{O}\left(v^{-2} ight)$	$\mathcal{O}\left(v^{-1} ight)$	$\mathcal{O}\left(v^4 ight)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$
ultrasoft	$\mathcal{O}\left(v^{-4} ight)$	$\mathcal{O}\left(v^{-2} ight)$	$\mathcal{O}\left(v^{8} ight)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$
potential	$\mathcal{O}\left(v^{-2} ight)$	$\mathcal{O}\left(v^{-2} ight)$	$\mathcal{O}\left(v^{5} ight)$	$\mathcal{O}\left(\alpha_{s}v^{-1} ight)$

total contribution = $\alpha_s \times$ massless prop. \times top prop.² \times int. measure

mode	massless propagator	top prop- agator	integration measure	total contribution
hard	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(v^{0} ight)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$
soft	$\mathcal{O}\left(v^{-2} ight)$	$\mathcal{O}\left(v^{-1} ight)$	$\mathcal{O}\left(v^4\right)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$
ultrasoft	$\mathcal{O}\left(v^{-4} ight)$	$\mathcal{O}\left(v^{-2} ight)$	$\mathcal{O}\left(v^{8} ight)$	$\mathcal{O}\left(lpha_{s}v^{0} ight)$
potential	$\mathcal{O}\left(v^{-2} ight)$	$\mathcal{O}\left(v^{-2} ight)$	$\mathcal{O}\left(v^{5} ight)$	$\mathcal{O}\left(lpha_{s}v^{-1} ight)$

conclusion

All rungs in the ladder carrying potential modes add a power of $\alpha_s/v \simeq 1!$ Integrating out all of these modes yields a Coulomb-like potential, which the top quarks experience. This is why they are called "potential modes"!