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Part I: Introductory Lesson

There are a few lessons we need to learn before diving into the techniques of
Effective Field Theories. To illustrate consider

e+e− → µ+µ−

in the limit me → 0.

µ+

µ−

e+

e−

σ(e+e− → µ+µ−) =
4πα2

3(2E)2

√
1− m2

µ

E 2

(
1 +

1
2

m2
µ

E 2

)
+O(α3)

=
4πα2

3s

[
1 +O(α3,

m2
µ

s )

]
where s = (p + p′)2 = (2E)2, with E the energy of the muon in the
center-of-mass frame.

The second line is a good approximation for energies far above production
threshold (E � mµ).
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Part I: Introductory Lesson

q̄

q

e+

e−

What changes when considering e+e− → qq̄ instead?

1 Replace coupling e −→ Q|e|, with Q = − 1
3 ,+

2
3 .

2 Count each quark 3 times, one for each colour.
3 Include strong interaction effects (gluon exchange between the quarks, hadronisation, . . . )

In the limit E � mq � ΛQCD the formula changes to

σ(e+e− → qq̄) = 3Q2 4πα2

3s

[
1 +

αs(µ)

4π (. . .)

]
At which scale µ do we evaluate αs(µ)? [Actually a quite complicated problem...]

As long as µ� ΛQCD we have αs(µ)/(4π)� 1 (asymptotic freedom).
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Part I: Introductory Lesson

With the approximations made we have

R-ratio far away from production thresholds

R(s) =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

−→ 3
n∑

i=1

Q2
i = Rn

i flavour Qi

1 up + 2
3

2 down − 1
3

3 strange − 1
3

4 charm + 2
3

5 bottom − 1
3

n Rn

3 2.00
4 3.33
5 3.67
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Part I: Introductory Lesson
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Part I: Introductory Lesson

Straight-forward (quantum-mechanic) way to calculate the cross section:

1 Compute all Feynman diagrams to the desired precision to get the
amplitude.

2 Square the amplitude
3 Integrate over all final-state phase space.

There is a short-cut to this recipe . . .
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Part I: Introductory Lesson – The Optical Theorem
From amplitudes to cross section/decay rate:

The Optical Theorem

The optical theorem is a straight-forward consequence of the unitarity of
the S-matrix.

2ImA(a→ b) =
∑

f

∫
dΠf A(a→ f )A∗(b → f )

In the case at hand e+e− → qq̄ we have a one-loop Feynman diagram.

We need the “Discontinuity” of the forward-scattering amplitude [a = b].
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Part I: Introductory Lesson – The Optical Theorem

The following buzzwords are useful to know when talking to theorists:
Discontinuity, Branch-cut, Cutkosky rules.
They refer to the fact that e2πi = 1, or ln z̃ = ln z + n · 2πi .
We need to agree on a single prescription (branch) of the logarithm.
Example:

z

A

Ã

A = −r + iδ = r e i(π−ε)

Ã = −r − iδ = r e−i(π−ε)

⇒ lnA = ln r + iπ − iε
ln Ã = ln r − iπ + iε

⇒ lnA− ln Ã ε→0−→ 2πi︸︷︷︸
Disc

= 2i Im(lnA)
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Part I: Introductory Lesson – The Optical Theorem

Which particles can run in the loop before taking the discontinuity?

∼ −2αQ2

π

1∫
0

dx x(1− x) ln m2

m2 − x(1− x)s

has branch-cut, where m2 − x(1− x)s < 0,
starting at m2 − 1

4 s < 0 or s > (2m)2.

Answer:
Any particle can run, but only the ones kinematically allowed to exist
on-shell contribute to the physical cross section.
(i.e. gives a nonzero Disc.)
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Part I: Introductory Lesson
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Part I: Introductory Lesson

So let us pick s well below the bb̄ threshold, say
√

s = 7 GeV, and compute
σ(e+e− → qq̄) in two different theories:

1 nf = 4, namely u, d , s, c: ⇒ R = 3.33.
2 nf = 4 plus massive b-quark: ⇒ R = 3.33, too.

Both theories describe the same IR physics, but look different in the UV.

This is in the spirit of EFTs: Particles that (are so massive that they) don’t
appear as final states are “integrated out”.

Full Theory process energy Effective Theory
New Physics E � ΛNP Standard Model

Standard Model E � MW Weak eff. Hamiltonian
...

[Enrico Fermi’s Manhattan Project badge]

Before we explore EFTs further, a short interlude . . .
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Part I: Introductory Lesson – The Optical Theorem

Inclusive B decays
We look at the semileptonic B → Xu`ν̄ as an example.
The same procedure also works for B → Xsγ and B → Xs`

+`− FCNCs, . . .

Amplitude: Integrate out the W boson.

b
u

`

ν̄
W

b
u

`

ν̄

GF Vub

Optical Theorem:

leptonic

hadronic
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Part I: Introductory Lesson – The Optical Theorem

Precision requires us to include strong-interaction effects!
Focus on hadronic part of the diagram.

Example:

Here: Xu 3 (u + g)

[These are the type of diagrams theorists think of when discussing inclusive B decays.]

B. O. Lange Introduction: precision with EFTs 15 / 61



Recap

Part I: Lessons from the R-ratio
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Part II: Philosophy of EFT usage

Quantum corrections
Loops and logs

Consider a process that happens at energy scales much smaller than
MW ∼ O(100GeV), e.g. weak B → Dπ decays

π

B D

u

d
b c

MW

mb

Problem for precision: Strong interactions with multiple (vastly
different) scales can lead to uncontrolled perturbative series:

P(MW ,mb) = 1 + αs

(
# ln MW

mb
+ ∗
)

+ α2
s

(
# ln2 MW

mb
+ ∗
)

+ . . .
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Part II: Philosophy of EFT usage

P(MW ,mb) = 1 + αs

(
# ln MW

mb
+ ∗
)

+ α2
s

(
# ln2 MW

mb
+ ∗
)

+ . . .

is uncontrolled, because (αs ln MW
mb

)n is not small due to large logs. The
perturbative series needs to be reorganised, and all such factors resummed.

Solution
1 Match! We need to achieve a separation of scales, sometimes also called

“Factorization”.
2 Run! As far as you can. [←− Attn: clever double entendre.]

3 (Keep going.) [←− OK, that’s just lame.]

Step 1: Match P to this product of two series:[
1 + αs

(
# ln MW

µ
+ ∗
)

+ . . .
]
·
[
1 + αs

(
# ln µ

mb
+ ∗
)

+ . . .
]

P(MW ,mb) = C(MW , µ)D(mb, µ)

at the cost of introducing a “factorization scale” µ.
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Part II: Philosophy of EFT usage

Step 2a:
While the physical observable P(MW ,mb) is formally µ-independent, the
factors C and D by themselves are not. They obey

RGEs:

{
µ d

dµC(MW , µ) = γ(µ) C(MW , µ)

µ d
dµD(MW , µ) = −γ(µ) D(MW , µ)

}
⇒ µ

d
dµ (CD) = 0

[“C and D run with µ.”]

Step 2b:
Solve the Renormalization-Group Equations and evolve:

C(MW , µ) = C(MW , µhigh) U(µhigh, µ)

D(mb, µ) = D(mb, µlow) U(µ, µlow)
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Part II: Philosophy of EFT usage

One picks µhigh ∼ MW , so that C(MW , µhigh) does not have large logs.
Similarly µlow ∼ mb.
The scale µ can be anything, e.g. µ = µlow.

Therefore P(MW ,mb) = C(MW , µhigh)U(µhigh, µlow)︸ ︷︷ ︸
CRGimproved(MW ,µlow)

D(mb, µlow)

U(µhigh, µlow) is generally an exponential, which resums
(
αs ln µhigh

µlow

)n
.

This is called Renormalization-Group improved Perturbation Theory
The accuracy is labelled LO, NLO, NNLO, etc. [Exercise]
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Part II: Philosophy of EFT

The ingredients in the factorized physical observable P = C · D are
connected to

〈Full theory〉 = C(MW , µ) 〈EFT, µ〉

MW

mb

µ

µ+ δµ

∑
i

Ci (µ+ δµ) 〈Oi (µ+ δµ)〉

l∑
i

Ci (µ) 〈Oi (µ)〉

Reshuffle [modes]

The EFT reproduces the IR physics of the Full Theorie
to any desired precision.
The couplings [Ken Wilson coefficients Ci (µ)] capture
the UV completion of the Full Theorie.
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Part II: Philosophy of EFT

This is the modern view of renormalization. All renormalisable theories
are EFTs.
Case in point: QCD and the strong coupling.

d
d lnµαs(µ) = β(µ) = −2αs(µ)

∞∑
n=0

βn

(
αs(µ)

4π

)n+1

with β0 = 11− 2
3nf , . . . [David Gross, Frank Wilczek, David Politzer]

Explicit solution can be derived as an exercise.

αs(µ) =
2π

β0 ln µ
ΛQCD

+O

(
1

ln2 µ
ΛQCD

)

⇒ Landau pole for µ→ ΛQCD , asymptotic freedom for µ→∞
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Part II: Philosophy of EFT – OPE

Operator Product Expansion

Quick and Dirty R© OPE

Non-local interactions can be expanded in local operators:

=
∑

i Ci (MW )
Oi

−1
k2 −M2

W
=

1
M2

W

(
1 +

k2

M2
W

+
k4

M4
W

+ . . .

)

Leff 3
g2

M2
W

(ψ̄ψ)(ψ̄ψ) +
g2

M4
W

(ψ̄ψ)(i∂)2(ψ̄ψ) + . . .

In general any operator abiding by the symmetries can appear.
It’s an infinite sum, but ordered by power counting. [“OPE in 1/MW ”]
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Part II: Philosophy of EFT – OPE

Other important example: Non-locality in coordinate space can manifest itself
as an integral over a finite interval in momenum space:

M∫
0

dk 2m2k
(k2 + m2)2

=
M2

M2 + m2 = 1− m2

M2 +
m4

M4 + . . .

So Integrals can be expanded in an OPE in 1/interval.
We will see explicit examples in B decays shortly.
Disclaimer: There are lots of caveats, which we don’t need for our lesson
on Quick and Dirty R© OPE.
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Part II: Philosophy of EFT

Lesson learned:
When calculating processes involving a hierarchy of scales, e.g. weak B decays,

1 Integrate out the weak gauge bosons and top quark from the SM at a
large scale µhigh ∼ O(100GeV). MATCH!

2 Evolve the coefficient functions down to µlow ∼ O(5GeV). RUN!
3 If more scales exist in the problem (mc , experimental cuts, . . .),

do it again. REPEAT!

Keep going, until energy scales are so low that αs(µ) is not perturbative
anymore.

Besides precision through improved Perturbation Theory, we can also
systematically include Power Corrections.
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Recap
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Part III: Inclusive B decays

Semileptonic decay
PSfrag replaements

b

B

l

��

l

W

�

V

ub

X

u

�q

u

Kinematics
First we need to familiarize ourselves with the kinematics.

MBv = PX + P` + Pν̄︸ ︷︷ ︸
q

, where q is the momentum of the lepton pair,

v is the 4-velocity of the B meson, MB = 5.279 GeV, and

PX =

(
EX
~PX

)
is the hadronic final state’s momentum.
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Part III: Inclusive B decays

Any one event is characterized by 3 independent kinematic variables
(scalar variables).

Example: q2, E`, M2
X = P2

X = E 2
X − |~PX |2

All choices are equally valid, but my favorite set is the “light-cone
components” build from EX , |~PX |,E`,

Choice of kinematic variables

P+ = EX − |~PX |
P− = EX + |~PX |
P` = MB − 2E`

I’ll defend my choice shortly, and also explain why the signs seem
messed-up.
Note that M2

X = E 2
X − |~PX |2 = (EX − |~PX |)︸ ︷︷ ︸

P+

(EX + |~PX |)︸ ︷︷ ︸
P−

= P+P−.
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Part III: Inclusive B decays – Phase Space

By definition we have P+ ≤ P−, with equality only for ~PX = 0.
One reason for liking this choice is that the hadronic phase space is
particularly simple: a triangle.

m2
π

P−
≤ P+ ≤ P− ≤ MB

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5
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℄

The dots shall give an
impression on the distribution
of events in the phase space.
Besides the border
P+P− = m2

π as the lightest Xu
state we also show the lightest
Xc state in B → Xc`ν̄:
P+P− = m2

D .
This is where the background
makes measurements very
difficult. background

signal ≈ |Vcb |
2

|Vub |2
≈ 100
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Part III: Inclusive B decays – Phase Space

Exercise: Show that in B → Xsγ decays the available phase space is

m2
K

P−
≤ P+ ≤ P− = MB with P+ = MB − 2Eγ ,P− = MB .

Exercise: Show that the charged-lepton energy in B → Xu`ν̄ satisfies

m2
π

P−
≤ P+ ≤ P` ≤ P− ≤ MB with P` = MB − 2E` .

Exercise: Show that q2 = (MB − P+)(MB − P−) .

Taming the background
So how can we cut away the b → c background?

1 Cut on q2 & (MB −MD)2

2 Cut on M2
X . M2

D

3 Cut on P+ . M2
D/MB or perhaps Cut on P` . M2

D/MB

4 Some clever combination thereof?
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Part III: Inclusive B decays – Phase Space

Experimental Challenge:
1 Cut on q2 & (MB −MD)2

2 Cut on M2
X . M2

D

3 Cut on P+ . M2
D/MB

or perhaps P` . M2
D/MB

4 Some clever combination?
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Theoretical Challenge:
What can we calculate with what precision?
How can Effective Field Theories help us?
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Part III: Inclusive B decays

(1) and (2): Cut on high q2 and/or low M2
X .

Let’s look at the cut on q2. We need to calculate the differential decay
rate and integrate over the allowed region in P±.

(i)
2MD−

M2
D

MB∫
mπ

dP− . . .

(ii)
MD∫

mπ

dP+ . . .


⇒ OPE in 1

mc

[Remember the lesson on Quick and Dirty R© OPE]

Γ(q2 ≥ (MB −MD)2) = Γtotal

[
# + Λ̄

mc
# + λ1

m2
c

# + λ2
m2

c
# +O(

Λ3
QCD
m3

c
)
]

Can we improve on the precision of this calculation by relaxing the q2 cut
and combining it with an M2

X cut? “BLL” (C. Bauer,Z. Ligeti,M. Luke)
OPE on the P− integration can be improved, but OPE on P+ integration remains in 1/mc .

Only extension into the charmed region yields relief.
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Part III: Inclusive B decays

(0): Let’s take a step back and calculate the total rate Γtotal first.

Then the integrals in P± are over intervals of size O(mb).

Γtotal =
G2

F |Vub |2m5
b

192π3

[
# + λ1

m2
b

# + . . .
]
.

The leading-power hashtag is calculated by sending mb →∞, while
keeping the residual momentum k in

pb = mbv + k

dynamical and of order ΛQCD.

There is a field for that!
Heavy-quark effective theory (HQET): The mb dependence gets banned into
Wilson coefficients (UV), and the operators deal with the residual momentum
k (IR). Power corrections are in 1/mb. [Howard Georgi, 1990s]

We therefore also get 1/mb corrections on the previous slide.
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Part III: Inclusive B decays – HQET

For fans of Lagrangians:
Propagator:

1
mb/v + /k −mb

=
mb/v + /k + mb

(mbv + k)2 −m2
b

=
1

v · k
1 + /v
2 +O(k/mb)

Fields:

ψ(x) = e imbv·x
[
1 + /v
2 hv (x) +

1− /v
2 Hv (x)

]
Lagrangian:

LHQET = h̄v iv · Dhv + . . .
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Part III: Inclusive B decays

(3): Cut on P+ ≤ ∆.

Let’s try and fail with an OPE: [neglect mπ for now]

(i)
MB∫
0

dP− . . . O.K.

(ii)
∆∫
0

dP+ . . . not!

⇒ OPE in ΛQCD

∆
?

But the ideal cut ∆ =
M2

D
MB

= 660 MeV is too small:
All powers of ΛQCD

∆
are order 1.

They need to be summed up into a function S̃(∆), which is almost what
we call the “Shape Function”.
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Part III: Inclusive B decays

We aim at calculating the decay rate where P− ∼ mb and P+ ∼ ΛQCD ,
which means that the Xu state is a JET!

Jet: spray of particles

Both EX and |~PX | are somewhere near mb/2. large energy

The invariant mass M2
X = P+P− ∼ mbΛQCD is somewhat large, but

much smaller than m2
b. smaller invariant mass

The particles in this jet can interact with soft gluons, and also with
gluons collinear to this jet.

There are fields for that!
Soft-Collinear Effective Theory (SCET) describes

such particles and interactions.
[Bauer, Pirjol, Stewart; Luke, 2000s]
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Part III: Inclusive B decays – SCET

Let us align the z axis with the total jet momenum ~PX . Define reference
4-vectors

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1)

Light-cone coordinates
Any 4-vector pµ can be decomposed as

pµ = n · p︸︷︷︸
p+

n̄µ

2 + n̄ · p︸︷︷︸
p−

nµ

2 + pµ⊥ = (p+, p−, p⊥) , p2 = p+p− + p2
⊥.

If pµ is mainly in the nµ direction, then p− � p+ and p− � p⊥.

Define small parameter λ, s.t. (p+, p−, p⊥) ∼ mb(λ2, 1, λ).

“hard-collinear momentum”
Here: λ2 = ΛQCD/mb.
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Part III: Inclusive B decays – SCET

The light-cone coordinates explain, why the signs seem “reversed”:
p+ = n · p = p0 − p3 and p− = n̄ · p = p0 + p3.
[Sometimes the reference vectors are even called n+ = n, n− = n̄]

For fans of Lagrangians:
Propagator:

1
/p =

/p
p2 =

p− /n
2 + . . .

p+p− + p2
⊥

=
1

p+ +
p2⊥
p−

/n
2 + . . .

Fields:
ψ =

/n /̄n
4 ξ +

/̄n/n
4 η

Lagrangian:

LSCET = ξ̄
/̄n
2

[
in · D + i /D⊥

1
i n̄ · D i /D⊥

]
ξ + . . .
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Part III: Inclusive B decays

Similarly we can assign a power-counting rule for “soft momenta”, e.g. the
residual momentum k ∼ ΛQCD in pb = mbv + k.

Power counting

[hard mb(1, 1, 1)]
hard-collinear mb(λ2, 1, λ)

soft mb(λ2, λ2, λ2)

QCD sample diagram:

Soft momenta can couple to hard-collinear ones:

(λ2, λ2, λ2) + (λ2, 1, λ) ∼ (λ2 + λ2︸ ︷︷ ︸
O(λ2)

, 1, λ)

Dependence on the large scales mb, EX are absorbed in Wilson coefficients,
while the scales MX ∼

√
mbΛQCD and P+ ∼ ΛQCD remain dynamical.
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Part III: Inclusive B decays – Multi-Step Matching

We can also integrate out the “intermediate scale”
√

mbΛQCD – which is
still perturbative – and all collinear dynamics with it. We are left with
only soft physics, i.e. pure HQET.
This new Wilson “coefficient” is actually a distribution. Due to the
discontinuity we have δ(p2

X ) at tree level.
To make wordsmithing worse, this Wilson coefficient/distribution is called
the “jet function”. It is universal (process independent) and known to
high accuracy.
Finally there is one (non-local) HQET operator left. Its matrix element
between two B meson states is the “shape function”.

Match and Run
The procedure described above is sometimes called “Multi-Step Matching”,
and disentangles (factorizes) physics effects from different energy scales. The

running resums large logs of the form ln(m2
b/M2

X ).
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Part III: Inclusive B decays – Multi-Step Matching
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Part III: Inclusive B decays – Multi-Step Matching
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Part III: Inclusive B decays

The differential decay rate in the “shape-function region”, i.e. where
P+ ∼ ΛQCD and P− ∼ mb, is then expressed as the product of the leptonic and
hadronic tensors,

1
Γtotal

d3Γ

dP+dP−dP`
= LµνW µν ,

where the hadronic tensor factorizes:
“BLNP” (S.Bosch, B.L., M.Neubert, G.Paz)

W µν =
∑

i,j

tr
[

Γµi
/p−
2 Γνj

1 + /v
2

]
eU(µh,µi )Hij (P−, µh)

P+∫
0

dωJ(p2
ω, µi )S(ω, µi )

+O(
1

mb
)

The same structure is also found for power correction:
subleading shape functions, etc.
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Recap

Part III: Inclusive B decays

Cutting the background away
HQET and SCET
Factorization and Resummation
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Part IV: Top physics

Corrections to Breit-Wigner
line-shape
Unstable particle effective theory
Top pair production
(near threshold)
NRQCD
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Part IV: Top physics

M.Beneke, A.P.Chapovsky, A.Signer, G.Zanderighi; 2004
“Several higher-order calculations involving unstable particles have been
performed in recent years, in particular for the line shape of the Z boson,
W -pair production, and tt̄ production. In these calculations the finite width of
the particles have been treated in a variety of often pragmatic approaches.
While this may be adequate for the present, it is certainly desirable to
formulate a theoretical framework that would allow for
systematic improvements of the accuracy of such calculations. Moreover,
future precision experiments require that such a framework be developed.”
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Part IV: Top physics – Line Shape

The instability of a particle with mass M leads to a shift of the pole
location of the propagator into the complex plane.

1
p2 −M2

∗
, M2

∗ = M2 − iMΓ

e.g. e+e− → Z0 + X inclusive cross section

∼ Im 1
p2 −M2

∗
= − MΓ

(p2 −M2)2 + M2Γ2

Breit-Wigner:

MΓ

(p2 −M2)2 + M2Γ2
Γ→0−→ πδ(p2 −M2)

Problem
Unstable particle fields have no asymptotic particle states, should not be cut!
Usually we get away with it, if Γ is negligible.
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Part IV: Top physics – Line Shape

But for weak bosons, top quark, Γ ∼ 2 GeV > ΛQCD. The width gives
sizable effects in strong interactions.
Particularly important if p2 is near M2, i.e. p2 −M2 ∼ MΓ in the peak
region, where the power-counting variable

δ =
p2 −M2

M2 ∼ Γ

M ∼ O(0.01)

is small.

How can the mass parameter M2
∗ become complex?

Self energy bubbles resummed into the propagator:

1
p2 −M2 −→ 1

p2 −M2 − Π(p2)

Remember from earlier: if loop particles can
be on-shell, then loop gets imaginary part.

t
b

t
+ ...

W
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Part IV: Top physics – Line Shape

With Π(p2) ∼ ΓM ∼ g2M2, so two small parameters of the same order:
g2 ∼ δ.
Propagator 1

p2−M2
∗
∼ 1

M2δ , so (g2/δ)n ∼ O(1) need to be resummed.

“Dyson resummation”

There is a field for that!
Unstable-particle effective field theory
begins just like HQET with pµ = Mvµ + kµ, but this time kµ ∼ Γ.

[M.Beneke, A.P.Chapovsky, A.Signer, G.Zanderighi, 2010s]

Let us explore the logic behind the construction of this theory with scalar
particles instead of fermions.
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Part IV: Top physics – HSETfup

For fans of Lagrangians:
Propagator with p = Mv + k and M2

∗ −M2 = M∆

1
p2 −M2

∗
=

1
2M

1(
v · k − ∆

2 + ∆2
8M +

k2⊥
2M + . . .

)
Fields:

φ(x) = e iMv·xφv (x)

Lagrangian:

LHSETfup = 2Mφ†v

(
iv · D − ∆(1)

2

)
φv

+2Mφ†v

(
(iD⊥)2

2M +
[∆(1)]2

8M − ∆(2)

2

)
φv

+ . . .

We could explore a little more in the exercises.
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Part IV: Top physics – Line Shape

The quantity ∆ in the Lagrangian is actually a Wilson coefficient.
It is determined by a matching calculation and is IR safe.
The matching is performed by equating the self-energy

Π(p2)
∣∣
full theory

!
= Π(p2)

∣∣
effective theory

While the full theory gives a good description of the line shape σ(p2)

away from the resonance δ = p2−M2

M2 ∼ O(1), the effective theory is
apropriate for δ � 1.
Full theory and EFT results are merged where both theories are valid.
The precise definition of the mass (MS, pole mass, . . .) is important since
the residual mass term adds to ∆.
If we use the pole scheme, then ∆ = −iΓ is purely imaginary.
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Part IV: Top physics – Line Shape

Line shape = Inclusive cross-section

This framework can be extended to any required precision.
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Part IV: Top physics – Top pair production

Top pair production near threshold
This is a more complicated process, but the leading contribution comes from

t̄

t

e+

e−

Besides αs there is another small parameter v � 1, the velocity of the
top.

In the CoM frame the top-quark momentum pµ has time component

p0 =

√
s
2 = Mt +

1
2Mtv 2 + . . . ⇒

√
s − 2Mt︸ ︷︷ ︸

E

= Mtv 2

Relevant energy scales:
Mt ∼ 175 GeV, |~pt | ∼ Mtv ∼ 20 GeV, E = Mtv 2 ∼ Γt ∼ 2 GeV.
In the threshold region we need to resum (αs/v) ∼ O(1) to all orders.
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Part IV: Top physics – NRQCD

There are fields for that!
Non-relativistic QCD (NRQCD) expands the fields in “modes”: Momentum
components scale like certain powers in v � 1. [Bodwin, Braaten, Lepage, 1995]

QCD fields are decomposed in the following modes, where momentum pµ
scales like

hard(h) : p0 ∼ Mt , ~p ∼ Mt

soft(s) : p0 ∼ Mtv , ~p ∼ Mtv
potential(p) : p0 ∼ Mtv 2 , ~p ∼ Mtv
ultrasoft(us) : p0 ∼ Mtv 2 , ~p ∼ Mtv 2

When on-shell, only massless fields can be ultrasoft, and only heavy quarks can
be potential.
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Part IV: Top physics – (p)NRQCD

The virtualities for massless fields are of order

hard (h): p2 ∼ M2
t

soft (s), potential (p): p2 ∼ M2
t v2

ultrasoft (us): p2 ∼ M2
t v4.

When integrating out the scales M2
t we get NRQCD. When further

integrating out M2
t v 2 “potential NRQCD”.

Caveat: On-shell heavy quarks still have virtuality ∼ M2
t v2. pNRQCD is spatially non-local!

Two-step matching
procedure:

Mt

Mtv

Mtv 2

µ

LQCD[Q(h, s, p), g(h, s, p, us)]

LNRQCD[Q(s, p), g(s, p, us)]

LpNRQCD[Q(p), g(us)]
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Part IV: Top physics – NRQCD

Potential sector: Resummation of Feynman diagrams in threshold region
Massless (e.g. gluon) propagators:

1
k2 = − 1

~k2
+ . . . , O(v−2)

Heavy-quark propagators: [q = (
√

s, 0, 0, 0) = photon momentum ]

1
(q/2 + k)2 −M2

t
=

1
2Mt

1
E/2 + k0 − ~k2/(2Mt)

+ . . . , O(v−2)

New rung on the ladder: add two heavy-quark propagators and one
massless propagator O(v−6). Integration measure d4k ∼ O(v 5).

New rung on the ladder proportial to (αs/v) ∼ 1, needs resummation.
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Part IV: Top physics – NRQCD

The infinite sum builds up a Coulomb potential in which the top quarks act.
PNRQCD resembles Quantum-Mechanics perturbation theory.

Problem: Width of the top E −→ E + iΓt

The correlator function (before taking the Disc.) has an uncancelled IR
divergence of the form ∼ αsE/ε, which survives the cut as ∼ MtαsαEW/ε.
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Part IV: Top physics – Top pair production

[M.Beneke, 1501.0737]

Solution: We have to look at the full physical process!

σe+e−→W +W−bb̄ = σe+e−→[tt̄]res︸ ︷︷ ︸
NRQCD

+ σe+e−→[W +W−bb̄]nonres

IR divergences cancel between the two parts. State of the art: NNLO
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Summary

Lessons from this lecture

0 There is almost always a hierarchy of scales. [Except for Conformal Field Theories.]

1 Particles that are too heavy to appear on-shell can be integrated out.
Pretty much all Field Theories are Effective Field Theories.

We have seen this in R(s) = σ(e+e−→qq̄)
σ(e+e−→µ+µ−) explicitely.

Another prominent example is the Weak Effective Hamiltonian.
What really matters is not the mass, but the “off-shellness”
p2 −m2.
Quantum effects from the heavy mass/off-shellness are
captured in Wilson coefficients/couplings.
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Summary

Lessons from this lecture

2 EFTs help us with accuracy.

We can separate physics effects from different energy scales:
EFT operators reproduce the IR, Wilson coefficients capture
UV effects.
The Renormalization Group allows us to resum the
perturbative expansion, e.g. αs lnM/m.
The Operator Product Expansion gives a systematic framework
to improve results in a Power Series of power-counting
parameters, e.g. λ = m/M.
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Summary

Lessons from this lecture

3 Example in bottom-quark physics: ∆�
√

∆mb � mb � MW � ΛNP.

These are the energy scales relevant
to many inclusive B decays,
including weak decays B → X`ν̄,
FCNC decays B → Xγ,
B → X`+`−.

Introduced: HQET, SCET

Using EFTs can reduce the
µ-dependence.
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Summary

Lessons from this lecture

4 Example in top-quark physics: Γt �
√

ΓtMt � Mt ,
Mtv 2 � Mtv � Mt .

The width of an unstable particle is
a new (low) scale, which can be
captured by EFTs.

We touched on the line-shape and
on top-pair production.

Introduced: HSETfup, (p)NRQCD
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Summary

Lessons from this lecture

5 EFTs are a lot of work, but fun!

Thank you for listening.
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