The Quest for Precision

Thomas Mannel

Theoretische Physik I Universität Siegen

(日)

Nordhelle, 24.9.2015

Contents

- Static quantities
- Other Leptonic Processes
- Quark Flavour Physics
 - Flavour Reach and the Top-Quark Story
 - Are there Hints from Quark Flavor?
 - Hints from the leptonic sector
- 3 High Energy Frontier
 - Top Physics
 - Weak Boson Physics
 - Higgs Physics

< 回 > < 回 > .

Introduction

• The Standard Model (SM) is tested at all energy scales up to the electroweak scale

• Static quantities: electric and magnetic dipole moments: • light quark decays: π and K• Charm quark physics • Bottom quark physics • Top and Weak boson physics • Higgs Physics • Physics beyond the SM • Static quantities: $\mu \approx 0$ $\mu \approx \Lambda_{QCD}$ $\mu \approx m_c$ $\mu \approx m_b$ $\mu \approx m_t, M_W, M_Z$ • $\mu \approx V_{ewk}$ $\mu \approx \Lambda_{BSM}$

.≣⇒

- Disparate mass scales: Use Effective Field Theories
- SM: Leading term of Effective-Theory expansion

LHC at the Crossroads:

LHC after the Higgs Discovery is at the Crossroads

- Scenario 1: LHC Discovers plenty of new particles
 - "On shell" production of new particles
 - Study their decays, infer their properties
 - Construct the BSM theory
- Scenario 2: LHC discovers no new particles
 - Detailed study of the Higgs and the top quark
 - Other measurements involving the SM particles, QCD

・ 戸 ・ ・ 三 ・ ・

- Precision measurements of SM processes
- Scenario 1 is "easier", but there are no indications for this.

Scenario 2 puts LHC in the same situation as the low-energy experiments:

- The scales of BSM physics are far larger than the scales of the experiments
- BSM search is necessary indirect, no "on-shell" new physics
- The sensitivity to high scales depends crucially on precision, thus

The Quest for Precision

", at all scales we can reach!

・ロト ・四ト ・ヨト ・ヨト

"Traditional" Precision Experiments

T. Mannel, Siegen University The Quest for Precision

ヘロア 人間 アメヨア 人口 ア

Static quantities Other Leptonic Processes

イロト イポト イヨト イヨト

"Traditional" Precision Experiments

- Static quantities: Electric and magnetic dipole moments
- Michel Parameter Analyses in $\mu \rightarrow e \nu \bar{\nu}$
- Lepton Flavour Violation

Static quantities Other Leptonic Processes

Static Quantities: Magnetic Dipole Moments

Coupling of a photon to a spin-1/2 fermion

• Magnetic moment is for $q^2
ightarrow$ 0: g factor

$$\vec{\mu} = g \frac{e}{2m} \vec{s}$$
, $g = 2(1 + a)$, $F_M(0) = a$

• a: Anomalous magnetic moment Feynman Diagrams:

T. Mannel, Siegen University

The Quest for Precision

Static quantities Other Leptonic Processes

QED Contributions (Jegerlehner 2009)

	C_i		$a_{\mu}^{(2i)\;\rm QED}\times 10^{11}$
C_1	0.5	$a^{(2)}$	116140973.289(43)
C_2	0.765857410(27)	$a^{(4)}$	413217.620(14)
C_3	24.05050964(46)	$a^{(6)}$	30141.902(1)
C_4	130.8105(85)	$a^{(8)}$	380.807(25)
C_5	663.0(20.0)(4.6)	$a^{(10)}$	4.483(135)(31)

$$a_{\mu}^{(ext{QED})} =$$
 116584718.104 $imes$ 10 $^{-11}$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Static quantities Other Leptonic Processes

Stumbling Block: Hadronic contributions

• Nonperturbative, can partially be taken from data

$$egin{aligned} a^{(4, ext{vap,had})}_\mu &= (6903.0\pm52.6) imes10^{-11}\ a^{(6, ext{vap,had})}_\mu &= (-100.3\pm1.1) imes10^{-11}\ a^{(6, ext{lbl,had})}_\mu &= (116\pm39) imes10^{-11} \end{aligned}$$

イロト イポト イヨト イヨト

э

Static quantities Other Leptonic Processes

Electroweak Contributions

• Z Boson Contribution

$$a^{(2,{
m EW},{
m Z})}_{\mu} = -193.89 imes 10^{-11}$$

• W Boson Contribution

$$a_{\mu}^{(2,{
m EW},{
m Z})}=388.70 imes10^{-11}$$

• Higgs Boson Contribution is too small to matter

$$\textit{a}_{\mu}^{\rm (EWK)} = (152.2 \pm 2.0) \times 10^{-11}$$

ヘロン 人間 とくほ とくほ とう

3

ヘロト 人間 とくほとくほとう

Overall Result

Contribution	Value	Error
QED incl. 4-loops+LO 5-loops	116 584 718.1	0.2
Leading hadronic vacuum polarization	6 903.0	52.6
Subleading hadronic vacuum polarization	-100.3	1.1
Hadronic light–by–light	116.0	39.0
Weak incl. 2-loops	153.2	1.8
Theory	116591790.0	64.6
Experiment	116592080.0	63.0
Exp The. 3.2 standard deviations	290.0	90.3

Static Quantities: Electric Dipole Moments

• Electric dipole moments in classical physics

$$ec{d} = \int d^3ec{r} \;
ho(ec{r})ec{r} \;\;$$
 Energy: $U = ec{d} \cdot ec{\mathcal{E}}$

• Quantum Field theory: States are characterized by momentum \vec{p} and Spin \vec{J} : \vec{d} must be proportional to \vec{J}

$$U = d \, \vec{J} \cdot \vec{E}$$

프 > < 프 > .

- *d* mud be parity odd:
 - P Violation (and also T Violation) \rightarrow CP violation

Static quantities Other Leptonic Processes

EDM's of elementary particles

• Electromagnetic interaction with EDM: (Flavour diagonal)

$$\mathcal{L}_{ ext{EDM}} = rac{ extsf{d}}{2} ar{\psi} extsf{i} \sigma_{\mu
u} \gamma_5 \psi \, extsf{F}^{\mu
u}$$

- SM Scenario without Strong CP: CKM Phase
 d must be proportional to Δ = Im V^{*}_{cs} V_{us} V_{cd} V^{*}_{ud}!
- Thus we have two W exchanges:

Static quantities Other Leptonic Processes

イロト イポト イヨト イヨト

- However, sum of all the two-loop diagrams vanishes for quark edm's → need another (gluon) loop Shabalin 78
- Result for *d* quark (similar for the up qark)

$$d_d = e \, rac{m_d lpha_s G_F^2 m_c^2 \Delta}{108 \pi^5} \left[\ln^2 rac{m_b^2}{m_c^2} \ln rac{M_W^2}{m_b^2} + ..
ight] \sim -0.3 imes 10^{-34} {
m e~cm}$$

Khiplovich 86, Czarnecki, Krause 97

Naive composition of the Neutron edm:

$$d_N = rac{4}{3} d_d - rac{1}{3} d_u \sim 10^{-34} {
m e~cm}$$

This is too small, neutron is a composite object.

Neutron EDM: Long Distance Effects

- Difficult to compute due to Long Distance Effects
- "Loopless" Estimate (order of magnitude) (Uraltsev, M)

$$|d_n| = 10^{-31} \, e \, \mathrm{cm}$$

- Short distance loops will be parametrically small by loop factors $1/(16\pi^2)$
- The EDM's of the constituents do not play any role
- Strong CP remains a problem:

$$|d_n| \approx 2.3 \cdot 10^{-16} \, e \, \mathrm{cm} \times \theta$$

• Given the current experimental bound:

$$|d_n| \le 2.9 \cdot 10^{-26} \, e \, \mathrm{cm} \quad (90\% CL)$$

ヘロト ヘアト ヘヨト ヘ

Static quantities Other Leptonic Processes

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Other Leptonic Proceses

- Michel Parameters in $\ell \to \ell' \nu \bar{\nu}$
 - Precision measurement of the V A structure
 - $\rho(\mu) = 0.74979 \pm 0.00026$
- Charged Lepton Number and/or Flavour violation
 - $\ell \to \ell' \gamma$ and $\ell \to \ell' \ell'' \ell'''$
 - Muonium-Antimuonium Oscillations
 - Experimental efforts! (MEG, Mu3e etc.)
- Leptonic CP Violation

Flavour Reach and the Top-Quark Story Are there Hints from Quark Flavor? Hints from the leptonic sector

ヘロア 人間 アメヨア 人口 ア

ъ

Quark Flavour Physics

T. Mannel, Siegen University The Quest for Precision

Flavour Reach and the Top-Quark Story Are there Hints from Quark Flavor? Hints from the leptonic sector

What can Flavour tell us?

- Effective field theory picture:
- Standard model (without right handed ν's) is the (dim-4) starting point.
- Any new physics manifests itself as higher dimensional operators:

$$\mathcal{L} = \mathcal{L}_{\dim 4}^{SM} + \mathcal{L}_{\dim 5} + \mathcal{L}_{\dim 6} + \cdots$$

 $\bullet \ \mathcal{L}_{dim\,n}$ are suppressed by large mass scales

$$\mathcal{L}_{\dim n} = \frac{1}{\Lambda^{n-4}} \sum_{i} C_n^{(i)} O_n^{(i)}$$

 $O_n^{(i)}$: Operators of dimension n, $SU(3)_C \times SU(2)_W \times U(1)_Y$ gauge invariant $C_n^{(i)}$: dimensionless couplings

Flavour Reach and the Top-Quark Story Are there Hints from Quark Flavor? Hints from the leptonic sector

Quark Flavour Physics

- For Quarks there is no contribution to $\mathcal{L}_{dim 5}$
- Some of the $O_i^{(n)}$ mediate $\Delta F = 2$ flavour transitions:

$$\begin{array}{ll} O_1^{(6)} &= (\bar{s}_L \gamma_\mu d) (\bar{s}_L \gamma^\mu d) & (\text{Kaon Mixing} \\ O_2^{(6)} &= (\bar{b}_L \gamma_\mu d) (\bar{b}_L \gamma^\mu d) & (B_d \text{ Mixing}) \\ O_3^{(6)} &= (\bar{b}_L \gamma_\mu 2) (\bar{b}_L \gamma^\mu s) & (B_s \text{ Mixing}) \\ O_4^{(6)} &= (\bar{c}_L \gamma_\mu u) (\bar{c}_L \gamma^\mu u) & (D \text{ Mixing}) \end{array}$$

- $\Lambda \sim 1000$ TeV from Kaon mixing ($C_i = 1$)
- Λ ~ 1000 TeV from D mixing
- $\Lambda \sim 400$ TeV from B_d mixing
- $\Lambda \sim 70$ TeV from B_s mixing

イロト イポト イヨト イヨト

- "New physics" is around the corner??
- Are the flavour data a hint at a new physics scale well above the TeV scale?
- ... there are a few corners where $\mathcal{O}(1)$ flavour effects are still possible, c.f. Charm CPV
- Are there lessons from history?

Flavour Reach and the Top-Quark Story Are there Hints from Quark Flavor? Hints from the leptonic sector

The Top Quark Story

- First indirect hint to a heavy top quark:
 B – B Oscillation of ARGUS (1987)
- The world in 1987 ("PETRA Days"): The top was believed to be at ~ 25 GeV

... based on good theoretical arguments

 ARGUS could not have seen anything with a 25 GeV Top (within SM)

Flavour Reach and the Top-Quark Story Are there Hints from Quark Flavor? Hints from the leptonic sector

・ロト ・回ト ・ヨト ・ヨト

- The consequences:
 - (-) No Toponium
 - (-) No Top quark discovery at LEP and SLC
 - (-) No "New Physcis $\mathcal{O}(30 \text{ GeV})$ " just around the corner
 - (+) CP violation in the B sector may become observable
 - (+) GIM is weak for bottom quarks
- This was actually good for Flavour Physics ...
- GIM suppressed decays as a probe for large scales
- From current data: TeV "New Physics" must have a flavour structure close to the one of the SM
- $\bullet \rightarrow$ Concept of "Minimal Flavour Violation" (MFV)

Flavour Reach and the Top-Quark Story Are there Hints from Quark Flavor? Hints from the leptonic sector

・ロット (雪) () () () ()

Hints from Quark Flavor?

FCNC Decays: $b \rightarrow s$ and $b \rightarrow d$ transitions

• $B_{s/d} \rightarrow \mu \mu$

- Theoretically simple, hadronic input mainly fb
- Measurement (LHCb and CMS), Combined:

$$\mathrm{Br}(B_{\mathcal{S}}
ightarrow \mu \mu) = (3.1 \pm 0.7) imes 10^{-9}$$

• $B \to K^{(*)}\ell\ell$

- Theoretically more complicated, long distance effects
- Complete angular analysis, some "tensions"
- Lepton Universality Violation?

Flavour Reach and the Top-Quark Story Are there Hints from Quark Flavor? Hints from the leptonic sector

Charmless Semileptonics: $b \rightarrow u \ell \bar{\nu} V_{ub}$ Puzzle

The Quest for Precision

・ロト ・ 理 ト ・ ヨ ト ・

э

Flavour Reach and the Top-Quark Story Are there Hints from Quark Flavor? Hints from the leptonic sector

Standard Semitauonics: $b \rightarrow c \tau \bar{\nu}$

$$R(D^{(*)}) = rac{\mathrm{Br}(B o D^{(*)} au ar{
u})}{\mathrm{Br}(B o D^{(*)} \ell ar{
u})}$$

T. Mannel, Siegen University The Que

The Quest for Precision

Flavour Reach and the Top-Quark Story Are there Hints from Quark Flavor? Hints from the leptonic sector

・ 戸 ・ ・ 三 ・ ・

Hints from the leptonic sector

- $\mathcal{L}^{SM}_{dim 4}$ does not have a right handed neutrino
- ... thus no mixing for the leptons
- Discovery of Neutrino Osciallations: Nontrivial Flavour Physics of Leptons
- Important observation: The combination

$$N_i = (H^{c,\dagger}L_i), \quad L_i = \begin{pmatrix} \nu_{L,i} \\ \ell_{L,i} \end{pmatrix}, \ H^c = (i\tau^2)H^*, H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

has no SM Quantum numbers

"Traditional" Precision Experiments Flavour Reach and the Top-Quark Story Quark Flavour Physics Are there Hints from Quark Flavor? High Energy Frontier Hints from the leptonic sector

 This allows for a Unique dim -5 Operator: Generates Majorana masses for the ν's

$$\mathcal{L}_{\dim 5} = \frac{1}{\Lambda_{\text{LNV}}} \sum_{ij} C_5^{ij} (\bar{L}_j H^c)^c (H^{c,\dagger} L_i)$$

- Generates a mixing matrix for the leptons (PMNS Matrix), analogous to the CKM Matrix
- This term is Lepton Number Violating, related to the scale $\Lambda_{\rm LNV}$
- Small Neutrino masses: Λ_{LNV} must be high, almost as big as the GUT scale?
- Hopefully Λ_{QFV} and Λ_{LFV} is not that high!

ヘロト ヘアト ヘヨト ヘ

・ロト ・ ア・ ・ ヨト ・ ヨト

- Some more tensions in charmless nonleptonics
- Could be something exciting, but as well only a statistical fluctuation
- Increasing the reach:
 - More Data
 - Better Theory

Γοp Physics Weak Boson Physics Higgs Physics

High Energy Frontier

T. Mannel, Siegen University The Quest for Precision

イロト 不得 とくほ とくほとう

Top Physics Weak Boson Physics Higgs Physics

High Energy Frontier

Two "modes of operation"

- Direct Searches:
 - "on -shell production of new particles
 - Direct observation of their decays
 - Study their properties by analyzing their decay products
- Indirect Searches:
 - No "on -shell production of new particles
 - Only indirect observation through virtual effects
 - Requires precise calculations

... let's assume no new particles below 10 TeV ...

▲ 同 ▶ ▲ 臣 ▶

Γοp Physics Weak Boson Physics Higgs Physics

Precision SM Physics at High Energies

- Top Physics
- Weak Boson Physics
- Higgs Physics

... to be done at the LHC and a possible ILC ...

イロト イポト イヨト イヨト

Top Physics Weak Boson Physics Higgs Physics

Top Physics

Top quark is special because of its large mass Anomalous couplings of the top quark

- Right handed admixtures in $t \rightarrow (b, s, d)W$
- Measurement of the top quark charge
- CP Violation in top processes
- FCNC couplings of the top quark:
 - $t \rightarrow (c, u)(Z/\gamma)$ with all helicity combinations

Top Physics Weak Boson Physics Higgs Physics

LP2015 Summary in Top FCNC (A.B.Meyer)

Exp.	\sqrt{s}	$\mathcal{B}(t ightarrow u \gamma)$	$\mathcal{B}(t ightarrow c \gamma)$	Reference		
CDF	1.96 TeV	3.2 •	10^{-2}	PRL 80 (1998) 2525		
CMS	8 TeV	$1.6 \cdot 10^{-4}$	$1.8 \cdot 10^{-3}$	CMS TOP-14-003		
		$\mathcal{B}(t ightarrow uZ)$	$\mathcal{B}(t ightarrow cZ)$			
CDF	1.96 TeV	3.7 •	10^{-2}	PRL 101 (2008) 192002		
DØ	1.96 TeV	$3.2 \cdot 10^{-2}$		PLB 701 (2011) 313		
ATLAS	7 TeV	$7.3 \cdot 10^{-3}$		JHEP 09 (2012) 139		
CMS	7 TeV	$5.1 \cdot 10^{-3}$	$1.1 \cdot 10^{-1}$	CMS TOP-12-021		
CMS	7+8 TeV	$5 \cdot 10^{-4}$		PRL 112 (2014) 171802		
ATLAS	8 TeV	$7 \cdot 10^{-4}$		ATLAS TOPQ-2014-08		
		$\mathcal{B}(t ightarrow ug)$	$\mathcal{B}(t ightarrow cg)$			
CDF	1.96 TeV	$3.9 \cdot 10^{-4}$	$5.7 \cdot 10^{-3}$	PRL 102 (2009) 151801		
DØ	1.96 TeV	$2.0 \cdot 10^{-4}$	$3.9 \cdot 10^{-3}$	PLB 693 (2010) 81		
ATLAS	7 TeV	$5.7 \cdot 10^{-5}$	$2.7 \cdot 10^{-4}$	PLB 712 (2012) 351		
ATLAS	8 TeV	$3.1 \cdot 10^{-5}$	$1.6 \cdot 10^{-4}$	ATLAS CONF-2013-063		
CMS	7 TeV	$3.6 \cdot 10^{-4}$	$3.4 \cdot 10^{-3}$	CMS TOP-14-007		
ATLAS	8 TeV	$4 \cdot 10^{-5}$	$1.7 \cdot 10^{-4}$	ATLAS TOPQ-2014-13		
$\mathcal{B}(t ightarrow uH) \mathcal{B}(t ightarrow cH)$						
ATLAS	7+8 TeV	7.9 -	10^{-3}	JHEP 06 (2014) 008		
CMS	8 TeV	—	$5.6 \cdot 10^{-3}$	PRD 90 (2014) 112013		
CMS	8 TeV	—	$9.3 \cdot 10^{-3}$	CMS TOP-13-017		
CMS	8 TeV	$4.2 \cdot 10^{-3}$	$4.7 \cdot 10^{-3}$	CMS TOP-14-019	l≣ ► K	

T. Mannel, Siegen University

The Quest for Precision

Top Physics Weak Boson Physics Higgs Physics

Weak Boson Physics

All kinds of elektroweak processes: in particular WW scattering

Top Physics Weak Boson Physics Higgs Physics

LP2015 SM fit (A.K.Einsweiler)

Top Physics Weak Boson Physics Higgs Physics

Higgs Physics

- Precise measurement of Higgs Properties
- ... in particular of its couplings

ヘロト 人間 ト ヘヨト ヘヨト

Top Physics Weak Boson Physics Higgs Physics

ヘロン ヘアン ヘビン ヘビン

Top Physics Weak Boson Physics Higgs Physics

Conclusion

- In case no no particles are found at the LHC the "new physics scale" may be large
- This puts LHC (and possibly even ILC) in the same situation as Flavor and low energy experiments
- This is a change of paradigm at the high energy frontier
- Identifying "new physics" requires to have precise measurement as well as precise theory
- Unique identification may be difficult, Thus measurement in as many processes are required!

イロト イポト イヨト イヨト