Interpretation of measurements – Problems

David M. Straub

"Precision measurements in top-quark and bottom-quark physics", September 25, 2015

$1 \hspace{.1in} B_q ightarrow \ell^+ \ell^-$

- 1. Discuss the physical origin of the factor of m_{μ}^2 in the branching ratio of $B_s \to \mu^+ \mu^-$.
- 2. Compute the branching ratio $\overline{BR}(B_s \to \tau^+ \tau^-)$ in the Standard Model. Discuss the prospects of measuring this decay in the near future.
- 3. Compute the branching ratio $BR(B_d \to \mu^+ \mu^-)$ and compare it to the measurement by LHCb and CMS

$$BR(B_d \to \mu^+ \mu^-) = (3.9^{+1.6}_{-1.4}) \times 10^{-9}.$$

Try to interpret this measurement.

For the numerics, you can make use of the following resources.

- PDG http://pdg.lbl.gov/
- HFAG http://www.slac.stanford.edu/xorg/hfag/
- FLAG http://itpwiki.unibe.ch/flag
- CKMfitter or UTfit http://ckmfitter.in2p3.fr/, http://utfit.org/

2 Indirect bounds on modified top couplings

Assume that there is a new physics model that generates contributions to the Wilson coefficient $(C_{Hq}^{(1)})_{ij}$ at the electroweak scale. Find the maximum allowed branching ratio of the decay $t \to cZ$ using the following constraints.

1. The partial Z width to b quarks

$$R_b = \frac{\Gamma(Z \to bb)}{\Gamma(Z \to \text{hadrons})}$$

can be written at leading order as

$$R_b = \frac{|g_{Zbb}^L|^2 + |g_{Zbb}^R|^2}{\sum_{q=u,d,s,c,b} \left(|g_{Zqq}^L|^2 + |g_{Zqq}^R|^2\right)}$$

In the SM, $g^L_{Zqq} \approx 0.577$ and $g^R_{Zqq} \approx 0.077$.

The measurement and SM prediction read

$$R_b^{\exp} = 0.21629(66)$$
 $R_b^{SM} = 0.21583(4)$

2. The Wilson coefficient C_{10} , which is constrained by the measurement of $B_s \to \mu^+ \mu^-$ is modified as

$$\frac{C_{10}}{C_{10}^{\rm SM}} = 1 + \frac{2\pi}{\alpha V_{tb} V_{ts}^* Y(x_t)} \delta g_{Zbb}^L$$

where $Y(x_t) \approx 0.98$.