"Precision measurements in top-quark and bottom-quark physics", September 25, 2015

Interpretation of measurements

Presented by David M. Straub

Junior Research Group "New Physics" Excellence Cluster Universe, Munich

Outline

1 Introduction

- 2 Interpreting BR($B_s \rightarrow \mu^+ \mu^-$)
 - Standard Model prediction
 - Beyond the Standard Model
- ${f 3}$ Towards a global analysis of b o s transitions
- Probing top couplings in bottom decays

Introduction

2 Interpreting BR
$$(B_s
ightarrow \mu^+ \mu^-)$$

- Standard Model prediction
- Beyond the Standard Model
- ${f 3}$ Towards a global analysis of b o s transitions
- 4 Probing top couplings in bottom decays

Ideally ...

David Straub (Universe Cluster)

Realistically ...

Challenges for theory

- 1. Observables in top & bottom physics involve strong interaction \Rightarrow uncertainties from non-perturbative effects
- Beyond the SM, typically *more free parameters* in *L* than observations.
 ...

Realistically ...

Challenges for theory

- 1. Observables in top & bottom physics involve strong interaction \Rightarrow uncertainties from non-perturbative effects
- **2.** Beyond the SM, typically *more free parameters* in \mathcal{L} than observations. **3.** ...

How effective field theories can help

- 1. Allow to *separate* long-distance (QCD) and short-distance (EW, BSM) physics
- 2. Allow to *parametrize* the ignorance about short-distance physics exploiting the known *symmetries*

Hierarchy of effective theories

David Straub (Universe Cluster)

・ロト ・ 日 ト ・ 日 ト ・ 日 ・ つへぐ

Hierarchy of effective theories

$$\ln E \wedge \mathcal{L} = ?$$

$$\Lambda_{NP} - \mathcal{L} = \mathcal{L}_{SM} + \sum \frac{1}{\Lambda_{NP}^2} C_i Q_i + \dots$$

$$v \sim m_t - \mathcal{L} = \mathcal{L}_{QED} + \mathcal{L}_{QCD}^{n_f=5} + \sum \frac{1}{m_W^2} C_i O_i + \dots$$

$$m_b - \mathcal{L} = \mathcal{L}_{QED} + \mathcal{L}_{QCD}^{n_f=5} + \sum \frac{1}{m_W^2} C_i O_i + \dots$$

David Straub (Universe Cluster)

Introduction

2 Interpreting BR($B_s \rightarrow \mu^+ \mu^-$)

- Standard Model prediction
- Beyond the Standard Model

${f 3}$ Towards a global analysis of b o s transitions

4 Probing top couplings in bottom decays

David Straub (Universe Cluster)

Interpreting a measurement

LHCb & CMS:

$${\sf BR}(B_s o \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) imes 10^{-9}$$

David Straub (Universe Cluster)

$B_s ightarrow \mu^+ \mu^-$ branching ratio in the SM

$$\begin{split} \mathsf{BR}(B_s \to \mu^+ \mu^-) &= \mathsf{\Gamma}(B_s \to \mu^+ \mu^-) / \mathsf{\Gamma}(B_s \to \text{anything}) \\ &= \tau_{B_s} \mathsf{\Gamma}(B_s \to \mu^+ \mu^-) \\ &= \tau_{B_s} \Phi(m_{B_s}, m_\mu) \left| \langle \mu \mu | \mathcal{A} | \mathcal{B}_s \rangle \right|^2 \end{split}$$

•
$$\tau_{B_s} = 1/\Gamma_s$$
 – lifetime

- ▶ Φ phase space
- ► A amplitude

$$\Phi(m_{B_s}, m_\mu) = rac{1}{16\pi} rac{1}{m_{B_s}} \sqrt{1 - rac{4m_\mu^2}{m_{B_s}^2}}$$

$B_s ightarrow \mu^+ \mu^-$ amplitude in the EFT

$\langle \mu \mu | \mathbf{A} | \mathbf{B}_{s} \rangle = i \langle \mu \mu | \mathbf{C}_{10} \mathbf{O}_{10} | \mathbf{B}_{s} \rangle + O(m_{b}^{2}/m_{W}^{2})$

- $O_{10} = (\bar{s}_L \gamma^\mu b_L) (\bar{\mu} \gamma_\mu \gamma_5 \mu) \text{semi-leptonic axial vector operator}$
- C₁₀ Wilson coefficient

$$\langle \mu\mu|\mathcal{C}_{10}\mathcal{O}_{10}|B_s
angle=\mathcal{C}_{10}\langle 0|ar{s}_L\gamma^\mu b_L|B_s
angle(ar{\mu}\gamma_\mu\gamma_5\mu)$$

• $\langle 0 | \bar{s}_L \gamma^{\mu} b_L | B_s \rangle$ – hadronic matrix element

$$\langle 0|\bar{\mathbf{s}}_{L}\gamma^{\mu}\mathbf{b}_{L}|B_{s}\rangle = \frac{1}{2}\langle 0|\bar{\mathbf{s}}\gamma^{\mu}\mathbf{b}|B_{s}\rangle - \frac{1}{2}\langle 0|\bar{\mathbf{s}}\gamma^{\mu}\gamma_{5}\mathbf{b}|B_{s}\rangle = 0 - \frac{1}{2}if_{B_{s}}p^{\mu}$$

*f*_{Bs} decay constant

 $B_s
ightarrow \mu^+ \mu^-$ Wilson coefficient in the SM

$$C_{10} = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} \frac{1}{s_w^2} V_{tb} V_{ts}^* Y(x_t)$$

- ► G_F Fermi constant
- ► V_{tq} CKM elements
- $x_t = m_t^2 / m_W^2$
- ► Y Inami-Lim function

$$Y(x_t) = Y_0(x_t) \left[1 + O(\alpha_s) + O(\alpha_s^2) + O(\alpha_{em}) + \ldots \right]$$

Some higher order diagrams

Bobeth, Gorbahn, and Stamou 1311.1348, Hermann et al. 1311.1347

David Straub (Universe Cluster)

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Recipe: how to predict ${\sf BR}({\it B_s}
ightarrow \mu^+ \mu^-)_{\sf SM}$

$$\mathsf{BR}(B_s \to \mu^+ \mu^-)_{\mathsf{SM}} = \tau_{B_s} \frac{G_F^2}{\pi} \left(\frac{\alpha}{4\pi s_w^2}\right)^2 m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2}} m_{B_s} f_{B_s}^2 |V_{tb}V_{ts}^*|^2 Y(x_t)^2$$

• Liftetime τ_{B_s} : take from experiment

David Straub (Universe Cluster)

Recipe: how to predict ${\sf BR}({\it B}_s o \mu^+\mu^-)_{\sf SM}$

$$\mathsf{BR}(B_s \to \mu^+ \mu^-)_{\mathsf{SM}} = \tau_{B_s} \frac{G_F^2}{\pi} \left(\frac{\alpha}{4\pi s_w^2}\right)^2 m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2}} m_{B_s} f_{B_s}^2 |V_{tb}V_{ts}^*|^2 Y(x_t)^2$$

- Liftetime τ_{B_s} : take from experiment
- G_F , α , s_w , $m_{B_s}^2$, m_{μ} : take from PDG

Recipe: how to predict ${\sf BR}({\it B}_s o \mu^+\mu^-)_{\sf SM}$

$$\mathsf{BR}(B_s \to \mu^+ \mu^-)_{\mathsf{SM}} = \tau_{B_s} \frac{G_F^2}{\pi} \left(\frac{\alpha}{4\pi s_w^2}\right)^2 m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2}} m_{B_s} f_{B_s}^2 |V_{tb}V_{ts}^*|^2 Y(x_t)^2$$

- Liftetime τ_{B_s} : take from experiment
- G_F , α , s_w , $m_{B_s}^2$, m_{μ} : take from PDG
 - caveat: which definition to take for α, s_w?

Recipe: how to predict ${\sf BR}({\it B}_s o \mu^+\mu^-)_{\sf SM}$

$$\mathsf{BR}(B_s \to \mu^+ \mu^-)_{\mathsf{SM}} = \tau_{B_s} \frac{G_F^2}{\pi} \left(\frac{\alpha}{4\pi s_w^2}\right)^2 m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2}} m_{B_s} f_{B_s}^2 |V_{tb}V_{ts}^*|^2 Y(x_t)^2$$

- Liftetime τ_{B_s} : take from experiment
- G_F , α , s_w , $m_{B_s}^2$, m_{μ} : take from PDG
 - caveat: which definition to take for α, s_w?
 - answer: ambiguity is solved by including EW corrections in Y!

Recipe: how to predict BR $(B_s \rightarrow \mu^+ \mu^-)_{SM}$

$$\mathsf{BR}(B_s \to \mu^+ \mu^-)_{\mathsf{SM}} = \tau_{B_s} \frac{G_F^2}{\pi} \left(\frac{\alpha}{4\pi s_w^2}\right)^2 m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2}} m_{B_s} f_{B_s}^2 |V_{tb}V_{ts}^*|^2 Y(x_t)^2$$

- Liftetime τ_{B_s} : take from experiment
- $G_F, \alpha, s_w, m_{B_c}^2, m_{\mu}$: take from PDG
 - caveat: which definition to take for α , s_w ?
 - answer: ambiguity is solved by including EW corrections in Y!
- Y(x_t): include NNLO QCD and NLO EW corrections and RG evolution

Recipe: how to predict BR $(B_s \rightarrow \mu^+ \mu^-)_{SM}$

$$\mathsf{BR}(B_s \to \mu^+ \mu^-)_{\mathsf{SM}} = \tau_{B_s} \frac{G_F^2}{\pi} \left(\frac{\alpha}{4\pi s_w^2}\right)^2 m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2}} m_{B_s} f_{B_s}^2 |V_{tb}V_{ts}^*|^2 Y(x_t)^2$$

• Liftetime
$$\tau_{B_s}$$
: take from experiment

- $G_F, \alpha, s_w, m_{B_c}^2, m_{\mu}$: take from PDG
 - caveat: which definition to take for α , s_w ?
 - answer: ambiguity is solved by including EW corrections in Y!
- $Y(x_t)$: include NNLO QCD and NLO EW corrections and RG evolution
- $f_{B_c}^2$: from lattice QCD

Recipe: how to predict BR $(B_s \rightarrow \mu^+ \mu^-)_{SM}$

$$\mathsf{BR}(B_s \to \mu^+ \mu^-)_{\mathsf{SM}} = \tau_{B_s} \frac{G_F^2}{\pi} \left(\frac{\alpha}{4\pi s_w^2}\right)^2 m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2}} m_{B_s} f_{B_s}^2 |V_{tb}V_{ts}^*|^2 Y(x_t)^2$$

• Liftetime
$$\tau_{B_s}$$
: take from experiment

- $G_F, \alpha, s_w, m_{B_c}^2, m_{\mu}$: take from PDG
 - caveat: which definition to take for α , s_w ?
 - answer: ambiguity is solved by including EW corrections in Y!
- Y(x_t): include NNLO QCD and NLO EW corrections and RG evolution
- $f_{B_c}^2$: from lattice QCD
- $|V_{tb}V_{ts}^*|^2$: from experiment

Lattice determinations of *f*_R

Determining $|V_{tb}V_{ts}^*|$

- There is no direct measurement of V_{ts}
- But CKM elements can be extracted from a global fit of the CKM matrix

$$|V_{tb}V_{ts}^*| = A\lambda^2 \left[1 + \lambda^2 \left(\bar{\rho} - \frac{1}{2}\right)\right] + O(\lambda^6)$$

David Straub (Universe Cluster)

Global CKM fits

David Straub (Universe Cluster)

- 《口》 《母》 《臣》 《臣》 三臣 - のくで

Global CKM fits

Using the global fit result assumes that neutral meson mixing is free from physics BSM

Using tree-level CKM determinations

- $|V_{cb}|$ from inclusive & exclusive $b
 ightarrow c \ell
 u$
- $|V_{ub}|$ from inclusive & exclusive $b
 ightarrow u\ell
 u$
- $|V_{us}|$ from $K \to \pi \ell \nu$
- $\blacktriangleright \ \gamma \ {\rm from} \ {\rm B} \to {\rm D}{\rm K}$

$$|V_{tb}V_{ts}^*| = |V_{cb}| \left(1 - \frac{|V_{us}|^2}{2} + \frac{|V_{ub}|}{|V_{cb}|} |V_{us}| \cos\gamma\right) \approx |V_{cb}| (1 - 0.025 + 0.007)$$

Status of V_{cb} measurements

Two subtleties when relating experiment and SM

- 1. What about the process $B_s \rightarrow \mu^+ \mu^- \gamma$ with a soft γ escaping detection?
- **2.** What about B_s vs. \overline{B}_s decay? Their lifetimes differ by 12%!

$${\it B_s}
ightarrow \mu^+ \mu^- \gamma$$

Two sources of photons

- 1. Direct emission can be suppressed below the % level by a tight *cut* on $q^2 = m_{B_s}^2$
- Bremsstrahlung the number we calculated corresponds to the BR fully inclusive of bremsstrahlung. This can be taken into account e.g. by simulating bremsstrahlung in the experimental analysis or by imposing a photon energy cut and computing the correction factor

cf. Buras et al. 1208.0934

B_s lifetime difference

Due to $B_s - \overline{B}_s$ mixing, there is a sizable lifetime difference between the two B_s mass eigenstates:

$$\tau_{B_{s}^{L}} = \Gamma_{B_{s}^{L}}^{-1} = 1.42 \,\mathrm{ps} \qquad \tau_{B_{s}^{H}} = \Gamma_{B_{s}^{H}}^{-1} = 1.61 \,\mathrm{ps}$$
$$\tau_{B_{s}} = \Gamma_{B_{s}}^{-1} = \left[\frac{1}{2} \left(\Gamma_{B_{s}^{L}} + \Gamma_{B_{s}^{H}}\right)\right]^{-1}$$

David Straub (Universe Cluster)

イロト イロト イミト イミト ニミニ のへで

Time-dependent untagged decay rate

$$\Gamma(B_s(t)
ightarrow \mu^+ \mu^-) = R_H e^{-t/ au_{B_s^H}} + R_L e^{-t/ au_{B_s^L}}$$

So far, we have computed

$$\mathsf{BR}(B_s \to \mu^+ \mu^-) = \frac{\tau_{B_s}}{2} \, \Gamma(B_s(t=0) \to \mu^+ \mu^-)$$

But experiments actually measure

$$\overline{\mathrm{BR}}(B_s o \mu^+ \mu^-) = rac{1}{2} \int_0^\infty \Gamma(B_s(t) o \mu^+ \mu^-) dt$$

It turns out that De Bruyn et al. 1204.1737

$$\frac{\overline{\mathsf{BR}}(B_s \to \mu^+ \mu^-)}{\mathsf{BR}(B_s \to \mu^+ \mu^-)} = \frac{\tau_{B_s^{\mathcal{H}}}}{\tau_{B_s}}$$

Result: ${\it B_s} ightarrow \mu^+ \mu^-$ SM vs. experiment

$$\overline{\mathrm{BR}}(B_s o \mu^+ \mu^-)_{\mathrm{exp}} = (2.8^{+0.7}_{-0.6}) imes 10^{-9}$$

$$\overline{ ext{BR}}(B_s
ightarrow \mu^+ \mu^-)_{ ext{SM}} = (3.65 \pm 0.23) imes 10^{-9}$$

$$\Rightarrow \textit{R}(\textit{B}_{\textit{s}} \rightarrow \mu^{+}\mu^{-}) = \frac{\overline{\textit{BR}}(\textit{B}_{\textit{s}} \rightarrow \mu^{+}\mu^{-})}{\overline{\textit{BR}}(\textit{B}_{\textit{s}} \rightarrow \mu^{+}\mu^{-})_{\textit{SM}}} = 0.78 \pm 0.18$$

Summary: SM prediction of BR $(B_s \rightarrow \mu^+ \mu^-)$

- Wilson coefficient ►
 - Perturbative calculation: a lot of work, but controllable uncertainty
 - CKM elements: caveat: ambiguities between full fit, incl. & excl. V_{cb}
- Matrix element ►
 - ► Decay constant from lattice: quite precise but error dominated by single computation
- Experiment vs. theory ►
 - Care has to be taken that what is measured and what is predicted are actually the same thing! (Here e.g.: lifetime effect, soft photons)

${\sf BR}({\it B_s} ightarrow \mu^+ \mu^-)$ error budget

Bobeth, Gorbahn, Hermann, et al. 1311.0903

David Straub (Universe Cluster)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Introduction

2 Interpreting BR $(B_s \rightarrow \mu^+ \mu^-)$

Standard Model prediction

Beyond the Standard Model

 ${f 3}$ Towards a global analysis of b o s transitions

4 Probing top couplings in bottom decays

Physics beyond the SM in $B_s \rightarrow \mu^+ \mu^-$

Assuming no new particles below 5 GeV, new physics does not affect

- Matrix element (f_{B_c}) ►
- CKM extraction based on tree-level decays * ►
- QCD corrections ►
- Phase space

All "short-distance" physics enters through modified Wilson coefficients

* see however Brod, Lenz, et al. 1412.1446
All possible contributing operators

$$O_{10} = (\bar{s}_L \gamma^\mu b_L) (\bar{\mu} \gamma_\mu \gamma_5 \mu) \qquad O'_{10} = (\bar{s}_R \gamma^\mu b_R) (\bar{\mu} \gamma_\mu \gamma_5 \mu) \\O_S = m_b (\bar{s}_R b_L) (\bar{\mu} \mu) \qquad O'_S = m_b (\bar{s}_L b_R) (\bar{\mu} \mu) \\O_P = m_b (\bar{s}_R b_L) (\bar{\mu} \gamma_5 \mu) \qquad O'_P = m_b (\bar{s}_L b_R) (\bar{\mu} \gamma_5 \mu)$$

- ▶ In the SM, $C'_{10} = C_S = C'_S = C_P = C'_P = 0$
- f_{B_s} remains the only required matrix element because

$$\langle 0|\bar{\mathbf{s}}\gamma_{\mu}\gamma_{5}\mathbf{b}|\bar{B}_{s}
angle = i\mathbf{p}^{\mu}\mathbf{f}_{B_{s}}, \qquad \langle 0|\bar{\mathbf{s}}\gamma_{5}\mathbf{b}|\bar{B}_{s}
angle = -rac{i\mathbf{f}_{B_{s}}m_{B_{s}}^{2}}{m_{b}+m_{s}},$$

Other operators (tensor, dipole) have vanishing matrix elements

Branching ratio beyond the SM

$$\mathsf{BR}(B_s \to \mu^+ \mu^-) = \mathsf{BR}(B_s \to \mu^+ \mu^-)_{\mathsf{SM}} \left[|\mathbf{A}|^2 + |\mathbf{B}|^2 \left(1 - \frac{4m_\mu^2}{m_{B_s}^2} \right) \right]$$

$$\begin{aligned} \mathbf{A} &= \frac{1}{C_{10}^{\text{SM}}} \left[\left(C_{10} - C_{10}' \right) + \frac{m_{B_s}^2}{2m_{\mu}} \left(C_P - C_P' \right) \right] \\ \mathbf{B} &= \frac{1}{C_{10}^{\text{SM}}} \left[\frac{m_{B_s}^2}{2m_{\mu}} \left(C_S - C_S' \right) \right] \end{aligned}$$

Example new physics models: MSSM

Even for a degenerate spectrum: Higgsino contribution

Complementarity with Higgs searches

Gray: bound from search for $A^0 \rightarrow \tau^+ \tau^-$ Altmannshofer, Carena, et al. 1211.1976

Example 2: Composite Higgs models

$$C_{10}^{(\prime)}\sim \sin heta^b_{L,R}\sin heta^s_{L,R}\,g_
ho rac{1}{m_
ho^2}rac{g^2}{g_
ho}$$

- Tree-level exchange of heavy vector resonance and modification of Z coupling
- no (pseudo)scalar operators generated in minimal models

${\it B}_q ightarrow \mu^+ \mu^-$ in composite Higgs models

two different scenarios for the flavour structure Niehoff et al. 1508.00569

Fitting the Wilson coefficients

• We can obtain model-independent constraints on new physics by considering the χ^2 function

$$\chi^{2}(C_{i}) = \frac{(x(C_{i}) - x_{exp})^{2}}{\sigma_{exp}^{2} + \sigma_{th}^{2}}$$

where $x = \overline{BR}(B_s \to \mu^+ \mu^-)$ and C_i are the Wilson coefficients.

Fitting the Wilson coefficients

• We can obtain model-independent constraints on new physics by considering the χ^2 function

$$\chi^{2}(C_{i}) = \frac{(x(C_{i}) - x_{\exp})^{2}}{\sigma_{exp}^{2} + \sigma_{th}^{2}}$$

where $x = \overline{BR}(B_s \to \mu^+ \mu^-)$ and C_i are the Wilson coefficients.

For a single real coefficient, the value allowed at 1σ (2σ) is determined by

$$\chi^2(C) - \chi^2(C^*) < 1 \ (< 4)$$

where C^* is the value that minimizes χ^2 .

Fitting the Wilson coefficients

• We can obtain model-independent constraints on new physics by considering the χ^2 function

$$\chi^{2}(C_{i}) = \frac{(x(C_{i}) - x_{\exp})^{2}}{\sigma_{exp}^{2} + \sigma_{th}^{2}}$$

where $x = \overline{BR}(B_s \to \mu^+ \mu^-)$ and C_i are the Wilson coefficients.

For a single real coefficient, the value allowed at 1σ (2σ) is determined by

$$\chi^2(C) - \chi^2(C^*) < 1 \ (< 4)$$

where C^* is the value that minimizes χ^2 .

For two coefficients, the 1σ (2σ) regions are given by

$$\chi^2(\vec{C}) - \chi^2(\vec{C}^*) <$$
 2.3 (< 6)

Fit results

SM effective theory

$$\ln E \wedge \mathcal{L} = ?$$

$$\Lambda_{NP} - \mathcal{L} = \mathcal{L}_{SM} + \sum \frac{1}{\Lambda_{NP}^2} C_i Q_i + \dots$$

$$v \sim m_t - \mathcal{L} = \mathcal{L}_{QED} + \mathcal{L}_{QCD}^{n_i=5} + \sum \frac{1}{m_W^2} C_i O_i + \dots$$

$$m_b - \mathcal{L} = \mathcal{L}_{QED} + \mathcal{L}_{QCD}^{n_i=5} + \sum \frac{1}{m_W^2} C_i O_i + \dots$$

SM-EFT operators matching onto $O_{10}^{(\prime)}$

$$\begin{split} & \mathcal{Q}_{Hq}^{(1)} = \left(\mathcal{H}^{\dagger} \, i \mathcal{D}_{\mu} \mathcal{H} \right) \left(\bar{q}_{s} \gamma^{\mu} q_{b} \right) \\ & \mathcal{Q}_{Hq}^{(3)} = \mathcal{H}^{\dagger} \, i \mathcal{D}_{\mu}^{\prime} \mathcal{H} (\bar{q}_{s} \tau^{\prime} \gamma^{\mu} q_{b}) \\ & \mathcal{Q}_{Hd} = \left(\mathcal{H}^{\dagger} \, i \mathcal{D}_{\mu} \mathcal{H} \right) \left(\bar{s}_{R} \gamma^{\mu} b_{R} \right) \end{split}$$

$$\begin{aligned} Q_{\ell q}^{(1)} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{q}_{s}\gamma^{\mu}q_{b}), \qquad \qquad Q_{\ell q}^{(3)} &= (\bar{\ell}\gamma_{\mu}\tau^{\prime}\ell)(\bar{q}_{s}\gamma^{\mu}\tau^{\prime}q_{b}), \\ Q_{ed} &= (\bar{l}_{R}\gamma_{\mu}l_{R})(\bar{s}\gamma^{\mu}b_{R}), \qquad \qquad Q_{\ell d} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{s}\gamma^{\mu}b_{R}), \\ Q_{qe} &= (\bar{q}_{s}\gamma_{\mu}q_{b})(\bar{l}_{R}\gamma^{\mu}l_{R}) \end{aligned}$$

$$egin{aligned} C_{10} = & C_{qe} - C_{\ell q}^{(1)} - C_{\ell q}^{(3)} + (C_{Hq}^{(1)} + C_{Hq}^{(3)}) \ C_{10}' = & C_{ed} - C_{\ell d} + C_{Hd} \end{aligned}$$

SM-EFT operators matching onto $O_{10}^{(\prime)}$

$$\begin{aligned} & \mathcal{Q}_{Hq}^{(1)} = \left(\mathcal{H}^{\dagger} \, i \mathcal{D}_{\mu} \mathcal{H} \right) \left(\bar{q}_{s} \gamma^{\mu} q_{b} \right) \\ & \mathcal{Q}_{Hq}^{(3)} = \mathcal{H}^{\dagger} \, i \mathcal{D}_{\mu}^{\prime} \mathcal{H} (\bar{q}_{s} \tau^{\prime} \gamma^{\mu} q_{b}) \\ & \mathcal{Q}_{Hd} = \left(\mathcal{H}^{\dagger} \, i \mathcal{D}_{\mu} \mathcal{H} \right) \left(\bar{s}_{R} \gamma^{\mu} b_{R} \right) \end{aligned}$$

$$\begin{aligned} Q_{\ell q}^{(1)} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{q}_{s}\gamma^{\mu}q_{b}), \qquad \qquad Q_{\ell q}^{(3)} &= (\bar{\ell}\gamma_{\mu}\tau^{\prime}\ell)(\bar{q}_{s}\gamma^{\mu}\tau^{\prime}q_{b}), \\ Q_{ed} &= (\bar{l}_{R}\gamma_{\mu}l_{R})(\bar{s}\gamma^{\mu}b_{R}), \qquad \qquad Q_{\ell d} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{s}\gamma^{\mu}b_{R}), \\ Q_{qe} &= (\bar{q}_{s}\gamma_{\mu}q_{b})(\bar{l}_{R}\gamma^{\mu}l_{R}) \end{aligned}$$

$$egin{aligned} C_{10} = & C_{qe} - C_{\ell q}^{(1)} - C_{\ell q}^{(3)} + (C_{Hq}^{(1)} + C_{Hq}^{(3)}) \ C_{10}' = & C_{ed} - C_{\ell d} + C_{Hd} \end{aligned}$$

We have not gained anything!

David Straub (Universe Cluster)

▲ロト ▲団ト ▲臣ト ▲臣ト 三臣 - のへで

David Straub (Universe Cluster)

(

SM-EFT operators matching onto
$$O_{S,P}^{(\prime)}$$

- At dimension 6 in the SM-EFT, there are only 2 independent scalar/pseudoscalar operators (as opposed to 4 in the low-energy EFT).
- The SM gauge symmetries restrict the form of scalar NP contributions (valid if $\Lambda_{\rm NP} \gg v$)

Introduction

2 Interpreting BR $(B_s ightarrow \mu^+ \mu^-)$

- Standard Model prediction
- Beyond the Standard Model

${f 3}$ Towards a global analysis of b o s transitions

4 Probing top couplings in bottom decays

Global analyses of b ightarrow s transitions

 Taking into account also radiative and semi-leptonic decays, more operators become relevant, e.g.

$$O_7^{(\prime)} = \frac{m_b}{e} (\bar{s}\sigma_{\mu\nu} P_{R(L)} b) F^{\mu\nu} \qquad O_9^{(\prime)} = (\bar{s}\gamma_\mu P_{L(R)} b) (\bar{\ell}\gamma^\mu \ell)$$

This necessitates a global analysis of constraints on Wilson coefficients

Decay	$C_{7}^{(\prime)}$	$C_{9}^{(\prime)}$	$C_{10}^{(\prime)}$
$B ightarrow X_s \gamma$	Х		
${\it B} ightarrow {\it K}^* \gamma$	Х		
$B ightarrow X_{s} \mu^{+} \mu^{-}$	Х	Х	Х
$B ightarrow K \mu^+ \mu^-$	Х	Х	Х
$B ightarrow K^* \mu^+ \mu^-$	Х	Х	Х
$B_s ightarrow \mu^+ \mu^-$			Х

Interpreting measurements: BR $(B o K \mu^+ \mu^-)$

• Similarly to $B_s \rightarrow \mu^+ \mu^-$,

$$\mathsf{BR}(B \to K\mu^+\mu^-) = \tau_B \Phi(m_B, m_K, m_\mu) \sum_i C_i |\langle K\mu\mu | O_i | B \rangle|^2$$

Interpreting measurements: BR $(B o K \mu^+ \mu^-)$

• Similarly to
$$B_s \rightarrow \mu^+ \mu^-$$
,

$$\mathsf{BR}(B \to K\mu^+\mu^-) = \tau_B \Phi(m_B, m_K, m_\mu) \sum_i C_i |\langle K\mu\mu | O_i | B \rangle|^2$$

- but there are several additional challenges
- 1. Wilson coefficients
 - There is now more than 1 non-zero Wilson coefficient already in the SM
 - These Wilson coefficients are renormalization scale dependent

2. Matrix elements

▶ As in the $B_s \rightarrow \mu^+ \mu^-$ case, we can factorize the matrix element into a hadronic and a leptonic part

 $\langle K\mu\mu|(\bar{s}\Gamma_ib)(\bar{\mu}\Gamma_i\mu)|B\rangle = \langle K|\bar{s}\Gamma_ib|B\rangle \times \langle \mu\mu|\bar{\mu}\Gamma_i\mu|0\rangle$

The hadronic matrix element is a form factor depending on the Dirac structure and the momentum transfer

$$\langle K | \overline{\mathbf{s}} \Gamma_i \mathbf{b} | B \rangle \sim f_i(q^2)$$

- Lattice QCD: restricted to high q²
- ► Light-Cone Sum Rules: restricted to low *q*²

Plot: Bailey et al. 1509.06235

Non-factorizable corrections

The naive factorization is not exact because there are photon-mediated contributions involving *purely hadronic* operators

Differential branching ratio (sketch)

- At low q^2 : can be computed in the limit $m_b \to \infty$. *Power corrections* $O(\Lambda/m_b)$ notoriously hard to control
- At high q²: q²-integrated observables less senitive to duality violation

Predictions vs. data

Predictions vs. data

▶ If there is a discrepancy between SM and data, we should keep in mind:

- Ambiguities in CKM elements (V_{cb})
- Uncertainties in form factors if they rely on a single method
- Difficulty to estimate size of non-factorizable (power) corrections

Null tests

Particularly powerful are measurements of quantities where the SM prediction is basically free from uncertainties. Example:

$$R_{K} = \frac{\mathsf{BR}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathsf{BR}(B^{+} \to K^{+}e^{+}e^{-})}$$

- All uncertainties mentioned on previous slide drop out
- ► LHCb:

$$R_{K}\left|_{\left[1,6
ight]\operatorname{GeV}^{2}}
ight.=0.745^{+0.090}_{-0.074}\pm0.036$$

$${m B} o {m K}^* \mu^+ \mu^-$$

New features compared to ${\it B}
ightarrow {\it K} \mu^+ \mu^-$

- K* is a vector meson
 - ▶ more amplitudes (depending on *K*^{*} polarization)
 - more form factors
- K* is not stable under strong interactions
 - form factor determinations more difficult (less reliable?)
 - ► $K^* \to K\pi$ decay gives access to additional decay angle \Rightarrow rich angular distribution

${\it B} ightarrow {\it K}^* (ightarrow {\it K} \pi) \mu^+ \mu^-$ decay distribution

Angular observables

Huge advantage: considering ratios of angular observables, many uncertainties drop out, BSM sensitivity improves

Angular observables

- Huge advantage: considering ratios of angular observables, many uncertainties drop out, BSM sensitivity improves
- Some tensions with SM in latest LHCb data, most prominently

Results from a global fit to Wilson coefficients

Altmannshofer and Straub 1411.3161

David Straub (Universe Cluster)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()

Several classes/sources of uncertainties

- Several classes/sources of uncertainties
 - higher order terms in perturbative series

- Several classes/sources of uncertainties
 - higher order terms in perturbative series
 - can be estimated e.g. by renormalization scale dependence

- Several classes/sources of uncertainties
 - higher order terms in perturbative series
 - can be estimated e.g. by renormalization scale dependence
 - parametric uncertainties

- Several classes/sources of uncertainties
 - higher order terms in perturbative series
 - can be estimated e.g. by renormalization scale dependence
 - parametric uncertainties
 - often of experimental origin
- Several classes/sources of uncertainties
 - higher order terms in perturbative series
 - can be estimated e.g. by renormalization scale dependence
 - parametric uncertainties
 - often of experimental origin
 - higher order terms in effective theories

- Several classes/sources of uncertainties
 - higher order terms in perturbative series
 - can be estimated e.g. by renormalization scale dependence
 - parametric uncertainties
 - often of experimental origin
 - higher order terms in effective theories
 - model uncertainties

- Several classes/sources of uncertainties
 - higher order terms in perturbative series
 - can be estimated e.g. by renormalization scale dependence
 - parametric uncertainties
 - often of experimental origin
 - higher order terms in effective theories
 - model uncertainties
 - lattice uncertainties

- Several classes/sources of uncertainties
 - higher order terms in perturbative series
 - can be estimated e.g. by renormalization scale dependence
 - parametric uncertainties
 - often of experimental origin
 - higher order terms in effective theories
 - model uncertainties
 - lattice uncertainties
 - statistical and systematic (finite spacing, volume, unphysical quark masses, etc.)

- Several classes/sources of uncertainties
 - higher order terms in perturbative series
 - can be estimated e.g. by renormalization scale dependence
 - parametric uncertainties
 - often of experimental origin
 - higher order terms in effective theories
 - model uncertainties
 - lattice uncertainties
 - statistical and systematic (finite spacing, volume, unphysical quark masses, etc.)
- How to treat them?

- Several classes/sources of uncertainties
 - higher order terms in perturbative series
 - can be estimated e.g. by renormalization scale dependence
 - parametric uncertainties
 - often of experimental origin
 - higher order terms in effective theories
 - model uncertainties
 - lattice uncertainties
 - statistical and systematic (finite spacing, volume, unphysical quark masses, etc.)
- How to treat them?
 - What is the "likelihood" of a parameter that we only have an order-of-magnitude estimate for?

Introduction

2 Interpreting BR $(B_s ightarrow \mu^+ \mu^-)$

- Standard Model prediction
- Beyond the Standard Model

f 3 Towards a global analysis of b o s transitions

4 Probing top couplings in bottom decays

Probing top-*Z* couplings

- Top couplings to the Z^0 are still poorly known
 - ▶ $Z \rightarrow t\bar{t}$ not kinematically allowed \Rightarrow only coupling not probed at LEP
 - ► Even FCNC couplings *Z*tu, *Z*tc still allowed to be sizable

$$BR(t \rightarrow qZ) < 5 \times 10^{-4}$$

Chatrchyan et al. 1312.4194

 Many BSM theories predict deviations from the SM in these couplings (e.g.: composite Higgs models)

Top vs. bottom couplings

- Let's focus on the couplings of *left-handed* tops:
 - $SU(2)_L$ gauge symmetry relates $t_L \leftrightarrow b_L$, $W^{\pm} \leftrightarrow Z^0$
 - CKM matrix relates q_L of different generations
- Can use the SM-EFT to find relations between the following couplings

$$\overline{t}_L t_L Z$$
, $\overline{t}_L c_L Z$, $\overline{b}_L b_L Z$, $\overline{t}_L b_L W^+$, $\overline{c}_L b_L W^+$, $\overline{s} b Z$

Operators modifying top couplings

► Operators modifying the Z/W couplings of left-handed quarks:

$$\left(Q_{Hq}^{(1)}\right)_{ij} = \left(H^{\dagger} i D_{\mu} H\right) \left(\bar{q}_{i} \gamma^{\mu} q_{j}\right) \qquad \left(Q_{Hq}^{(3)}\right)_{ij} = \left(H^{\dagger} i D_{\mu}^{\prime} H\right) \left(\bar{q}_{i} \tau^{\prime} \gamma^{\mu} q_{j}\right)$$

Operators modifying top couplings

► Operators modifying the Z/W couplings of left-handed quarks:

(

$$\left(\mathcal{Q}_{Hq}^{(1)}\right)_{ij} = \left(H^{\dagger} i \mathcal{D}_{\mu} H\right) \left(\bar{q}_{i} \gamma^{\mu} q_{j}\right) \qquad \left(\mathcal{Q}_{Hq}^{(3)}\right)_{ij} = \left(H^{\dagger} i \mathcal{D}_{\mu}^{\prime} H\right) \left(\bar{q}_{i} \tau^{\prime} \gamma^{\mu} q_{j}\right)$$

Work in the basis where the up-type quark mass matrix is diagonal:

$$q_L^i = \begin{pmatrix} u_L^i \\ \sum_j V_{ij} d_L^j \end{pmatrix}$$

where u_L , d_L are mass basis fields.

Operators modifying top couplings

► Operators modifying the *Z*/*W* couplings of left-handed quarks:

$$\left(Q_{Hq}^{(1)}\right)_{ij} = \left(H^{\dagger} i D_{\mu} H\right) \left(\bar{q}_{i} \gamma^{\mu} q_{j}\right) \qquad \left(Q_{Hq}^{(3)}\right)_{ij} = \left(H^{\dagger} i D_{\mu}^{\prime} H\right) \left(\bar{q}_{i} \tau^{\prime} \gamma^{\mu} q_{j}\right)$$

Work in the basis where the up-type quark mass matrix is diagonal:

$$q_L^i = \begin{pmatrix} u_L^i \ \sum_j V_{ij} d_L^j \end{pmatrix}$$

where u_L , d_L are mass basis fields.

Let's consider a theory with the following non-zero couplings at the electroweak scale:

$$a_{tt} = \left(C_{Hq}^{(1)}\right)_{33}$$
 $b_{tt} = \left(C_{Hq}^{(3)}\right)_{33}$ $a_{ct} = \left(C_{Hq}^{(1)}\right)_{23}$ $b_{ct} = \left(C_{Hq}^{(3)}\right)_{23}$

Wilson coefficients vs. couplings

Setting the Higgs field to its VEV ⟨H⟩ = ¹/_{√2}(0 v)^T and inserting the explicit form of the covariant derivative, one obtains coupling modifications

$$\Rightarrow \mathcal{L} \supset \frac{g}{c_w} Z_\mu \delta g^{L}_{Zqq'} \bar{q}_L q'_L + \left(\frac{g}{\sqrt{2}} W^+_\mu \delta g^{L}_{Wj} \bar{u}^j_L d^j_L + \text{h.c.} \right)$$

$$\begin{split} \delta g_{Ztt}^L &= b_{tt} - a_{tt} \\ \delta g_{Zct}^L &= b_{ct} - a_{ct} \\ \delta g_{Zbb}^L &= V_{tb}^2 (b_{tt} + a_{tt}) + 2V_{cb}V_{tb} (b_{ct} + a_{ct}) \\ &\approx (b_{tt} + a_{tt}) + 2V_{cb} (b_{ct} + a_{ct}) \\ \delta g_{Zbs}^L &= V_{tb}V_{cs}^* (b_{ct} + a_{ct}) + V_{tb}V_{ts}^* (b_{tt} + a_{tt}) + O(\lambda^4) \\ &\approx (b_{ct} + a_{ct}) - V_{cb} (b_{tt} + a_{tt}) \\ \delta g_{Wtb}^L &= V_{tb}b_{tt} + V_{cb}b_{ct} \end{split}$$

Experimental constraints

- ▶ If NP only in *a_{ij}* or *b_{ij}*, strong constraints from *b* physics
 - $Z \rightarrow b\bar{b}$
 - ▶ $B_s \rightarrow \mu^+ \mu^-$
- Upper bound on $t \rightarrow cZ$ see exercises

Model example: composite Higgs

Niehoff et al. 1508.00569

► To avoid the strong constraint from Z → bb, many BSM models (e.g. warped extra dimensions, composite Higgs) make use of a *custodial protection* that implies a_{ij} = -b_{ij}

- ► To avoid the strong constraint from Z → bb, many BSM models (e.g. warped extra dimensions, composite Higgs) make use of a *custodial* protection that implies a_{ij} = -b_{ij}
 - $Z\bar{d}_i d_j$ couplings are *protected*

- ► To avoid the strong constraint from Z → bb, many BSM models (e.g. warped extra dimensions, composite Higgs) make use of a *custodial* protection that implies a_{ii} = -b_{ii}
 - $Z\bar{d}_i d_j$ couplings are *protected*
- ► *B* physics constraints are still relevant because the protection is spoiled by the *renormalization group running* from the new physics scale Λ_{NP} down to the electroweak scale

- ► To avoid the strong constraint from Z → bb, many BSM models (e.g. warped extra dimensions, composite Higgs) make use of a *custodial* protection that implies a_{ij} = -b_{ij}
 - $Z\bar{d}_i d_j$ couplings are *protected*
- ► *B* physics constraints are still relevant because the protection is spoiled by the *renormalization group running* from the new physics scale Λ_{NP} down to the electroweak scale
- Consider the case where, at Λ_{NP}, only the LH/RH Zīt couplings are modified Brod, Greljo, et al. 1408.0792

Operator mixing

Following Brod, Greljo, et al. 1408.0792

- Under renormalization, the operators Q⁽³⁾_{Hq}, Q⁽¹⁾_{Hq}, Q_{Hu} mix into each other + the following SM-EFT operators
 - $Q_{\ell q}^{(1)} = (\bar{\ell} \gamma_{\mu} \ell) (\bar{q} \gamma^{\mu} q) \Rightarrow$ rare B and K decays
 - $Q_{\ell q}^{(3)} = (\bar{\ell} \gamma_{\mu} \tau' \ell) (\bar{q} \gamma^{\mu} \tau' q) \Rightarrow$ rare B and K decays
 - $Q_{\phi D} = |H^{\dagger} D^{\mu} H|^2$ Electroweak T parameter

Results

► After running from the new physics scale Λ_{NP} to the electroweak scale, the RG-induced effects are of the form

$$C_i \sim rac{1}{16\pi^2} \left(g^2 c_{g,ij}^2 \, C_j + y_t^2 c_{y,ij} \, C_j
ight) \ln rac{m_w}{\Lambda_{
m NP}}$$

Conclusions

- Interpreting measurements requires precise SM predictions. Challenges in *B* decays include (among others)
 - Wilson coefficient calculations beyond the leading order
 - ► Lattice computations of matrix elements (decay constants, form factors, ...)
 - Calculation or estimation of non-perturbative effects
- EFTs can help to parametrize NP effects model-independently and to correlate different observables
 - NB, in complete generality, this is often not useful need specific NP model to obtain correlations

David Straub (Universe Cluster)