

Precision Measurements in the Bottom Quark Sector:

Probing New Physics in Quantum Loops

Ulrich Uwer • Physikalisches Institut • Universität Heidelberg

Probing New Physics

• Energy frontier:

If energy is high enough we can discover NP detecting the production of "real" new heavy particles

• Precision (Intensity) frontier:

If the precision of the measurements is high enough we can discover NP due to effect of "virtual" new particles in loops also at low scales. However this also requires precise theoretical calculation.

Advantage of b hadrons: rich phenomenology of different loop effects such as mixing, CP violation, rare decays....

Weak b hadron hecays

New Physics in Quantum Loops

New Physics are corrections to Standard Model processes:

What is the scale of Λ_{NP} ? Size of C_{NP} and alignment w/r to C_{SM} ?

The Flavor Problem

Possible scenarios:

- new particles indeed have very large masses.
- new particles have degenerated masses
- mixing angles in new flavor sector are small, similar to SM

Flavor Problem: Absence of NP effects in flavor physics implies non-natural "fine tuning" if NP at TeV scale exists: Minimal flavor violation (MFV)

Neutral Meson Mixing

Figure from http://www.gridpp.ac.uk/news/?p=205

Mixing Phenomenology

Off – diagonal elements describe the mixing.

Different Mixing Mechansim

Mass Eigenstates

Diagonalization: Mass eigenstates:

 $|B_L\rangle = p|B^0\rangle + q|\overline{B^0}\rangle$ with m_{L,Γ_L} $|B_H\rangle = p|B^0\rangle - q|\overline{B^0}\rangle$ with m_{H,Γ_H}

complex coefficients $|\boldsymbol{p}|^2 + |\boldsymbol{q}|^2 = 1$

Time evolution:

$$|B_{H,L}(t)\rangle = |B_{H,L}(0)\rangle \cdot \mathbf{e}^{-im_{H,L}t} \cdot \mathbf{e}^{-\frac{1}{2}\Gamma_{H,L}t}$$

If there is no CP-violation |p/q|=1: B_L CP=+1, B_H CP=-1

From eigenvector and eigenvalue calculation:

Observable Mixing Parameter

$$m = \frac{M_H + M_L}{2}, \qquad \Gamma = \frac{\Gamma_H + \Gamma_L}{2}$$
$$\Delta m = M_H - M_L, \qquad \Delta \Gamma = \Gamma_L - \Gamma_H$$

Mixing parameters are calculable (see U.Nierste et al.)

Often a difference phase is used (because experimental accessible)

$$\phi_{\mathcal{M}} = \arg(-M_{12})$$

Theoretical predictions

$$t - \overline{t} : \qquad \propto m_t^2 |V_{tb}V_{td}^*|^2 \qquad \propto m_t^2 \lambda^6$$

$$c - \overline{c} : \qquad \propto m_c^2 |V_{cb}V_{cd}^*|^2 \qquad \propto m_c^2 \lambda^6$$

$$c - \overline{t}, \overline{c} - t : \qquad \propto m_c m_t V_{tb} V_{td}^* V_{cb} V_{cd}^* \propto m_c m_t \lambda^6$$

u quark can be replaced using unitarity V_{CKM}

$$M_{12,q} = \frac{G_F^2}{12\pi^2} (V_{tq}^* V_{tb})^2 M_W^2 S_0(x_t) B_{B_q} f_{B_q}^2 M_{B_q} \hat{\eta}_B \qquad \Delta m \approx 2 |M_{12}|^2$$

 $S_0(m_t^2/m_W^2)$ = Inami-Lim funct. = result of box diagramm. B_B = bag factor, f_B = decay constant: non-perturbative effects η_B = perturbative QCD corrections

Mixing phenomenology

$$|B^{0}(t)\rangle = g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B}^{0}\rangle \quad |\overline{B}^{0}(t)\rangle = g_{-}(t)\frac{p}{q}|B^{0}\rangle + g_{+}(t)|\overline{B}^{0}\rangle$$
$$g_{+}(t) = e^{-i(m-i\frac{\Gamma}{2})t} \left[+\cosh\frac{\Delta\Gamma t}{4}\cos\frac{\Delta mt}{2} - i\sinh\frac{\Delta\Gamma t}{4}\sin\frac{\Delta mt}{2} \right] \quad \Delta\Gamma\approx0$$
$$g_{-}(t) = e^{-i(m-i\frac{\Gamma}{2})t} \left[-\sinh\frac{\Delta\Gamma t}{4}\cos\frac{\Delta mt}{2} + i\cosh\frac{\Delta\Gamma t}{4}\sin\frac{\Delta mt}{2} \right]$$

Mixing phenomenology

$$\begin{aligned} \underline{\mathsf{Mixed/unmixed probability:}} & \Delta \Gamma \approx \mathbf{0} \\ \mathcal{P}(B^0 \to B^0, t) &= \left| \left\langle B^0 | B^0(t) \right\rangle \right|^2 = \frac{e^{-\Gamma t}}{2} (1 + \cos(\Delta m t)) \\ \mathcal{P}(B^0 \to \bar{B}^0, t) &= \left| \left\langle B^0 | \bar{B}^0(t) \right\rangle \right|^2 = \frac{e^{-\Gamma t}}{2} \left| \frac{q}{p} \right|^2 (1 - \cos(\Delta m t)) \end{aligned}$$

Mixing asymmetry:

$$A(t) = \frac{unmixed(t) - mixed(t)}{unmixed(t) + mixed(t)} = \cos(\Delta mt) \qquad \text{If } |q/p| = 1$$

Time dependent mixing asymmetry

B⁰ Mixing *)

*) ARGUS (DESY) in 1987: $m_{top} > 50$ GeV, PL B 192 (1987) 245.

B_s Mixing Measurement

Signal B (flavor specific decay) (flavor specific decay)(flavor s

Need production flavor

<u>Opposite B</u> Can be used for flavor tagging Problem w/ neutral B's (→mixing)

$$PDF \propto \left[e^{-\Gamma t} \cdot \left(\cosh\left(\frac{\Delta\Gamma}{2}t\right) \pm D \cdot \cos(\Delta m \cdot t) \right) \right] \otimes R(\sigma_t)$$
Production flavour from tagging algorithms

Detector effects on B_s oscillation

Finite time resolution: 44 fs. Reduced amplitude by smearing.

Realistic tagging: reduces amplitude by swapping events

Flavor Tagging

Figure from J.Wishahi)

Tagging algorithms not very efficient ($\varepsilon_{tag} = 2\%-20\%$) High mis-tag fraction ($\omega=30\%-40\%$) $\rightarrow D = (1-2\omega)$ (dilution) Effective Tagging efficiencies: $\varepsilon_{eff} \approx \varepsilon_{tag} D^2$ Statistical error of the mixing asymmetry: $\frac{1}{\sqrt{\varepsilon_{eff}N}}$.

Effective tagging efficiency scales event yield 18

How to measure the mis-tag fraction?

Dilution is determined in the oscillation fit.

Proper Time

- Proper time result of vertex (mostly)resolution and momentum resolution.
- In principle the vertex fits provide the vertex resolution can we trust error?

Need to check on data: true - reconstructed

z-scale and momentum scale uncertainty:

Propertime $t = \frac{Lm_B}{n}$

0.02% from each z-& momentum scale

New J. Phys. 15 (2013) 053021

Unsatisfying: Hadronic uncertainties limit the precision of theoretical prediction

Parameters with better precision?

Phases have very small absolute theoretical uncertainties:

$$\phi_{M} = \arg(M_{12}) = \arg\left(\frac{q}{p}\right)$$

Theory: $\phi_M = -0.0364 \pm 0.0016$

 $\mathsf{P}(\mathsf{B}^{0}\longrightarrow\overline{\mathsf{B}}^{0})\neq\mathsf{P}(\overline{\mathsf{B}}^{0}\longrightarrow\mathsf{B}^{0})$

CP-violation in mixing

Time dependent CP-violation of B_s decaying to a CP eigenstate

Phases are very sensitive to new effects in the loops.

Phase ϕ_M and mixing induced CPV (B_s)

$$\mathcal{A}_{CP}(\mathsf{t}) = \frac{\mathcal{P}(\overline{B}_{\mathsf{s}} \to f_{CP}) - \mathcal{P}(B_{\mathsf{s}} \to f_{CP})}{\mathcal{P}(\overline{B}_{\mathsf{s}} \to f_{CP}) + \mathcal{P}(B_{\mathsf{s}} \to f_{CP})} \propto \sin(\phi_{\mathsf{s}})\sin(\Delta\mathsf{m}\,\mathsf{t})$$
$$\begin{pmatrix} \phi_{\mathsf{M}}(\mathsf{B}_{\mathsf{s}}) \equiv \phi_{\mathsf{s}} \\ \phi_{\mathsf{M}}(\mathsf{B}_{\mathsf{d}}) \equiv \phi_{\mathsf{d}} \end{pmatrix}$$

Standard Model

Precise Standard Model prediction:

 $\phi_{\rm s}^{\rm SM} = -0.0364 \pm 0.0016$ rad

Complication: $\Delta\Gamma$ (**B**_s) \neq 0

$$\mathcal{A}_{CP}(\mathsf{t}) = \frac{\mathcal{P}(\overline{B}_{\mathsf{s}} \to f_{CP}) - \mathcal{P}(B_{\mathsf{s}} \to f_{CP})}{\mathcal{P}(\overline{B}_{\mathsf{s}} \to f_{CP}) + \mathcal{P}(B_{\mathsf{s}} \to f_{CP})} \propto \sin(\phi_{\mathsf{s}})\sin(\Delta \mathsf{m}\,\mathsf{t})$$

Golden Decay $B_s \rightarrow J/\psi (\mu\mu) \phi(KK)$ LHCb-PAPER-2014-059

15000 (2.5 MeV/c² 96000 events LHCb B_s (b)10000 PV ****|/ Candidates B 5000 5300 5350 5400 $m(J/\psi K^{+}K)$ [MeV/c²]

Problem:

The final state is not a pure CP eigenstate but a mixture of CP even and CP odd states: $A_{CP}(CP=+1) = A_{CP}(CP=-1)$. I.e., if we are unlucky we don't see CP violation even if the two CP components max. violate CP.

arXiv:1411.3104

$B_s \rightarrow J/\psi$ (μμ) ϕ (KK)

VV final state:

 $\overbrace{s}^{c} \int \psi \quad J^{PC} = 1^{--} \\ (L = 0, 1, 2 = relative orbital momentum)$

3 different polarization amplitudes with different relative orbital momentum:

CP-odd ($\ell = 1$): A_{\perp} CP-even ($\ell = 0, 2$): A_0, A_{II}

angular analysis to disentangle CP even/odd state

Angular analysis

Figure 3: Definition of helicity angles.

Lifetime plot – Γ and $\Delta\Gamma$ measurement

Decay Time Acceptance

Non-uniform decay-time acceptance in simulation:

Artefact of detector, trigger & reconstruction

Need to be measured

 $\Delta \Gamma_s = 0.0805 \pm 0.0091 \pm 0.0033 \,\mathrm{ps}^{-1},$ $\Gamma_s = 0.6603 \pm 0.0027 \pm 0.0015 \,\mathrm{ps}^{-1}.$ 5 per mille

Source	$\Gamma_s \ [\mathrm{ps}^{-1}]$	$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$
Statistical uncertainty	0.0027	0.0091
VELO reconstruction	0.0005	0.0002
Residual bias in simulation	0.0007	0.0029
Mass factorisation	—	0.0007
Trigger efficiency	0.0011	0.0009
Background and mass modelling	0.0001	0.0008
Peaking background	0.0005	0.0004
LHCb length scale	0.0002	_
Angular efficiency	0.0001	0.0002
Total systematic	0.0015	0.0033

Determination of Phase ϕ_s

www.slac.stanford.edu/xorg/hfag

CP Violation in mixing

$$\phi_{M/\Gamma} = \arg \left(-\frac{M_{12}}{\Gamma_{12}} \right) \qquad \begin{array}{c} \text{Theory:} \quad \mathsf{B}_{\mathsf{s}} \quad \phi_{M/\Gamma} = 0.0038 \pm 0.0010 \\ \mathsf{B}_{\mathsf{d}} \quad \phi_{M/\Gamma} = -0.0750 \pm 0.0244 \end{array}$$

CP-violation in mixing $B^0 \longrightarrow \overline{B^0} \qquad \qquad \overrightarrow{B^0} \longrightarrow B^0$ $f: \mu^- X \qquad \qquad f: \mu^+ X$

$$\begin{aligned} \boldsymbol{a}_{s\prime}^{q} &= \frac{\Gamma(\overline{B}_{q}^{0} \to B_{q}^{0} \to \mu^{+}X) - \Gamma(B_{q}^{0} \to \overline{B}_{q}^{0} \to \mu^{-}X)}{\Gamma(\overline{B}_{q}^{0} \to B_{q}^{0} \to \mu^{+}X) + \Gamma(B_{q}^{0} \to \overline{B}_{q}^{0} \to \mu^{-}X)}, \quad \boldsymbol{q} = \boldsymbol{d}, \boldsymbol{s} \\ &= \frac{1 - |\boldsymbol{q}/\boldsymbol{p}|^{4}}{1 + |\boldsymbol{q}/\boldsymbol{p}|^{4}} \approx \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin \phi_{M/\Gamma} \approx \frac{\Delta\Gamma}{\Delta m} \sin \phi_{M/\Gamma} & \qquad A.Lenz \text{ and } U.Nierste \\ & \boldsymbol{B}_{s} \quad \boldsymbol{a}_{SL}^{s} = (1.9 \pm 0.3) \times 10^{-5} \\ \boldsymbol{B}_{d} \quad \boldsymbol{a}_{SU}^{s} = -(4.1 \pm 0.6) \times 10^{-5} \end{aligned}$$

Measurement of a_{SL}

• Tagging of the initial state reduces the statistical power drastically

$$\mathbf{B}^{0} \longrightarrow \overline{\mathbf{B}}^{0} \longrightarrow \mu^{-} \mathbf{X} \qquad \overline{\mathbf{B}}^{0} \longrightarrow \mathbf{B}^{0} \longrightarrow \mu^{+} \mathbf{X}$$

• An untagged but time dependent analysis is possible:

reduction of stat. power only by factor 2.

 However this approach that there are the same number of B and B produced and that the production asymmetry is zero

$$A_P = \frac{\mathcal{P}(B^0) - \mathcal{P}(\overline{B}^0)}{\mathcal{P}(B^0) + \mathcal{P}(\overline{B}^0)}$$

Production asymmetry – O(1%)

Two main effects:

Cluster Collapse at low p_T

Enhances the production of species containing beam remnants at low transverse momentum (pt)

Beam Drag

Redistributes particle-antiparticles as function of rapidity

Production asymmetry

Can be measured simultaneously with a_{SL} using time-dependence

$$A_{\rm meas}(t) = \frac{\Gamma[f,t] - \Gamma[\bar{f},t]}{\Gamma[f,t] - \Gamma[\bar{f},t]} = \frac{a_{\rm sl}}{2} - \left(A_{\rm P} + \frac{a_{\rm sl}}{2}\right) \frac{\cos(\Delta M t)}{\cosh(\Delta \Gamma t/2)}$$

Difference between fast oscillating B_s and slowly oscillating B_d mesons:

- For B_s mesons the oscillating term can be completely neglected. (A time integrated analysis is thus possible)
- For B_d we cannot neglect the term and should include it into the fit.

Additional corrections? Yes, we are looking for small effects!

Detection Asymmetry

$$A_D = \frac{\varepsilon(f) - \varepsilon(\overline{f})}{\varepsilon(f) + \varepsilon(\overline{f})}$$
 Efficiency to detect & reconstruct a particle.

• Difference in tracking efficiency for positively/negatively charged tracks: Mostly related to acceptance problems.

→ inversion of magnetic field of spectrometer would invert the effect, thus by averaging effects are to first order gone!

Different material interaction

Detection asymmetry depends on final state particle of the decays.

Measure detection asymmetry

Measured asymmetry $B_d - \overline{B}_d$

Illustration:

 $a_{SL}=0.1\%$ $A_{P}=-2.5\%$ $A_{D}=7.5\%$

CP Violation in **B**_s mixing

Time integrated:

$$A_{meas} \equiv \frac{\Gamma(D_s^+ \mu^- X) - \Gamma(D_s^- \mu^+ X)}{\Gamma(D_s^+ \mu^- X) - \Gamma(D_s^- \mu^+ X)} = \frac{a_{s/2}^d}{2}$$

 $a_{sl}^{s} = (-0.06 \pm 0.50_{stat} \pm 0.36_{syst})\%$

Source	δ (%)
Tracking asymmetries	0.26
Muon asymmetries	0.16
Fitting	0.15
Backgrounds	0.10
Quadratic sum	0.36

... CP violation in B_d mixing

Time dependent analysis to separate production from CP asymmetry:

But: missing neutrino \rightarrow more background and problems to t = L reconstruct the decay time: don't know momentum: K-factor

M

Disturbing problem ...

No B mass peak because of missing neutrino: irreducible B⁺ background (10%) (no mixing asymmetry, but production asymmetry)

B⁺ production asymmetry:

$$\begin{split} A_P(B^+) &= A_{\rm raw}(B^+ \to J/\psi K^+) & \text{From LHCb data [I]} \\ &-A_{\rm CP}(B^+ \to J/\psi K^+) & \text{Other exp'ts [2]} \\ &-A_{\rm det}(K^+) & \text{Measured} \end{split}$$

 $A_P(B^+) = (-0.6 \pm 0.6)\%$ Second largest systematic.

Lifetime fit...

 $a_{sl}^{d} = (-0.02 \pm 0.19_{stat} \pm 0.30)\%$

 $a_p(B_d, 7 \text{ TeV}) = (-0.66 \pm 0.26 \pm 0.22)\%$ $a_p(B_d, 8 \text{ TeV}) = (-0.48 \pm 0.15 \pm 0.17)\%$

Systematics

$$a_{sl}^{d} = (-0.02 \pm 0.19_{stat} \pm 0.30)\%$$

3 per mille. We know how to improve!

Source	δ (%)
Detection asymmetry	0.26
B plus	0.13
Baryonic background	0.07
Bs background	0.03
Fake D background	0.03
K-factor model	0.03
Decay time acceptance	0.03
Mixing frequency	0.02
Quadratic sum	0.30

Comparison w/ other measurements

What have we learned about NP

Summary

 Searches for new effects in quantum loop require precise theoretical predictions as well as precise measurements. The B mixing measurements we have not yet reached the precision to realy challenge the Standard Model

- Rule of thumb for experimental (systematic) uncertainties:
 - few % is "easy"
 - 1% starts to become difficult
 - Few per mille is really challenging