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Precision Measurements in the 
Bottom Quark Sector:                      

Probing New Physics in Quantum Loops
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Probing New Physics 
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• Energy frontier:                                                                                                
If energy is high enough we can discover NP detecting the production 
of “real” new heavy particles  

• Precision (Intensity) frontier:
If the precision of the measurements is high enough we can discover 
NP due to effect of   “virtual” new particles in loops also at low scales. 
However this also requires precise theoretical calculation.
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Advantage of b hadrons: rich phenomenology of  different 
loop effects such as mixing, CP violation, rare decays….



Weak b hadron hecays
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Tree decays “CKM” suppressed:
→ Loop corrections important.
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New Physics in Quantum Loops
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What is the scale of ΛNP ? Size of CNP and alignment w/r to CSM ? 



The Flavor Problem
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Possible scenarios:
• new particles indeed have very large masses.
• new particles have degenerated masses
• mixing angles in new flavor sector  are small, similar to SM 

excluded NP scales 
for  generic flavor 

models CNP=1

Flavor Problem:   Absence of NP effects in flavor physics implies non-natural 
“fine tuning” if NP at TeV scale exists: Minimal flavor violation (MFV)
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Neutral Meson Mixing 
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Figure from http://www.gridpp.ac.uk/news/?p=205
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Mixing Phenomenology
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Different Mixing Mechansim
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Mass Eigenstates
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Diagonalization: Mass eigenstates:
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Time evolution:

From eigenvector and eigenvalue calculation:

If there is no CP-violation |p/q|=1: BL CP=+1, BH CP=-1 



Observable Mixing Parameter
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M/Γ

Often a difference phase is used 
(because experimental accessible)

( )12MM −= argφ

Mixing parameters are calculable (see U.Nierste et al.)



Theoretical predictions
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u quark can be replaced using unitarity VCKM

here: q=d

122Mm ≈∆

= Inami-Lim funct. = result of box diagramm. ( )22
0 Wt mmS

BB = bag factor, fB = decay constant:  non-perturbative effects  
ηB = perturbative QCD corrections



Mixing phenomenology 
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Mixing phenomenology
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Mixed/ unmixed probability:
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Mixing asymmetry:
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Time dependent mixing asymmetry
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B0 Mixing *)

B0

B0
-1ps0061051560 .. ±=∆ dm

*) ARGUS  (DESY) in 1987:  mtop > 50 GeV, PL B 192 (1987) 245. 

Phys. Lett. B 719 (2013) 318.



Bs Mixing Measurement
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Bs → Ds
- π+

Bs → Ds
+ π-

Bs
PV π+
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-
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B Opposite B
Can be used for flavor tagging
Problem w/ neutral B’s (→mixing)

Signal B                    
(flavor specific decay)
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Detector effects on Bs oscillation
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Finite time resolution: 44 fs. 
Reduced amplitude by smearing.

Realistic tagging: reduces 
amplitude by swapping events



Flavor Tagging
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Tagging algorithms not very efficient (εtag =2%-20%)
High mis-tag fraction (ω=30%-40%) )21( ω−=D (dilution)

Figure from J.Wishahi)

Effective Tagging efficiencies: εeff ≈ εtag D2

Same Side 

Opposite Side 

signal

Statistical error of the mixing asymmetry: 

Effective tagging 
efficiency scales 
event yield



How to measure the mis-tag fraction?
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Opposite side tagger:
B+ B+→J/ψK+

(self tagging)

Same side tagger:

need signal Bd or Bs

Dilution is determined 
in the oscillation fit.



Proper Time
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• Proper time result of  vertex (mostly)resolution  and momentum resolution.
• In principle the vertex fits provide the vertex resolution – can we trust error?

Need to check on data:  true - reconstructed

Bs → Ds (KKπ) π

Don’t know 
true vertex

Prompt Ds (KKπ) π event

true vertex     
= PV

z-scale and momentum 
scale uncertainty: p

mL
t B=Prope rtime 0.02% from each z-

& momentum scale 



Bs-Mixing
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∆ms = 17.768± 0.023 ± 0.006 ps-1

Bs → Bs

Bs → Bs

LHCb

Theorie (U.Nierste, 2012)
∆ms = 17.3± 1.5 ps-1

Unsatisfying: Hadronic uncertainties limit the precision of theoretical prediction

New J. Phys. 15  (2013) 053021

1 per mille  
(syst: z & p scale) 



Parameters with better precision?
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Phases have very small absolute theoretical uncertainties:
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new effects in the loops.



Phase φM and mixing induced CPV (Bs)
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Standard Model
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Bs Bs

[Monte Carlo
SM x 10 for
visibility]

[ ])1~ tme s
t ∆±Γ− sin( sin sφ

rad0016003640 .. ±−=SM
sφ

Precise Standard Model prediction:

φs small:
expect very small CPV



Complication: ∆Γ (Bs) ≠ 0
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Bs→ J/ψ (µµ) φ(KK)
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arXiv:1411.3104
LHCb-PAPER-2014-059 

Problem:                                                                                                  
The final state is not a pure CP eigenstate but  a mixture of CP even and 
CP odd states: ACP(CP=+1) = ACP(CP=-1). I.e., if we are unlucky we don’t 
see CP violation even if the two CP components max. violate CP.  

Bs
PV µ-

K-

K+

B

µ+

J/ψ

96000 events

Golden Decay



Bs→ J/ψ (µµ) φ(KK)
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• VV final state: 

−−= 1PCJ

−−= 1PCJ

LJJ )1)((CP)/(CP)/(CP −= φψψφ

(L = 0, 1,2 = relative orbital momentum)

3 different polarization amplitudes with 
different relative orbital momentum: 

angular analysis to disentangle CP even/odd state



Angular analysis
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CP even
CP odd



Lifetime plot − Γ and ∆Γ measurement
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CP even (BL)
CP odd (BH)

Experimental problem: 
Non uniform lifetime acceptance 



Decay Time Acceptance
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Non-uniform decay-time acceptance in simulation:

Artefact of detector, trigger  & reconstruction

Need to be 
measured
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5 per mille



Determination of Phase φs
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www.slac.stanford.edu/xorg/hfag

LHCb:   φs = 0.010 ± 0.039      PRL 114 (2015) 041801

HLs Γ−Γ=∆Γ



CP Violation in mixing
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Measurement of aSL

34

• Tagging of the initial state reduces the statistical power drastically

• An untagged but time dependent analysis is possible:

reduction of stat. power only by factor 2.

• However this approach that there are                                                         
the same number of B and B produced                                                                     
and that the production asymmetry is zero:

µ− X µ+ XB0 B0

B0 B0 B0B0 µ+ Xµ− X



Production asymmetry – O(1%)
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Cluster Collapse at low pT

Enhances the production of species 
containing beam remnants at low 
transverse momentum (pt) 

Two main effects:

Color connections
with remnant quarks
‘drag’ mesons w/     

anti-quarks 
towards  beam

Color connections
with di-quark remnants 
‘drag’ baryons  
towards the beam

Beam Drag Redistributes particle-antiparticles as function of rapidity 
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Production asymmetry
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Can be measured simultaneously with aSL using time-dependence

Difference between fast oscillating Bs and slowly oscillating Bd mesons:
• For Bs mesons the oscillating term can be completely neglected.                    

(A time integrated analysis is thus possible) 
• For Bd we cannot neglect the term and should include it into the fit.

Additional corrections? Yes, we are looking for small effects!



Detection Asymmetry
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• Difference in tracking efficiency for  positively/negatively charged 
tracks:  Mostly related to acceptance problems.

Efficiency to detect & 
reconstruct a particle. 

→ inversion of  magnetic field of 
spectrometer would invert the 
effect, thus by averaging 
effects are to first order gone!

positive

negative



Different material interaction

• Different material 
interaction: most 
prominent for K±

K-

K+

K- (su) + N → Λ + ….

Detection asymmetry depends on final state particle of the decays.

Kaon detection 
asymmetry = O(1%). 

Bs→ Ds µνX



Measure detection asymmetry
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e.g.

Split in

Prinzip:



Measured asymmetry Bd− Bd
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Illustration: 

aSL=0.1% AP=-2.5%     AD=7.5% 



CP Violation in Bs mixing
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… CP violation in Bd mixing 
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Time dependent analysis to separate production from CP asymmetry:

But: missing neutrino → more background and problems to 
reconstruct the decay time: don’t know momentum: K-factor



Disturbing problem …
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No B mass peak because of missing 
neutrino: irreducible B+ background (10%)
(no mixing asymmetry, but production 
asymmetry)

B+ production asymmetry:

Second largest systematic.



Lifetime fit…
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Systematics
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3 per mille. 
We know how 
to improve! 



Comparison w/ other measurements
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What have we learned about NP
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Summary
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• Searches for new effects in quantum loop require precise 
theoretical predictions as well as  precise measurements. 
The B mixing measurements  we have not yet reached the 
precision to realy challenge the Standard Model

• Theoretically “clean” observables are:
− CP asymmetries (measure phases)
− Angular distributions (test Lorentz structure of 

couplings)
• Theoretically more challenging are absolute rates                         

(large hadronic uncertainties) 

• Rule of thumb for experimental (systematic) uncertainties: 
• few % is “easy”
• 1% starts to become difficult 
• Few per mille is really challenging

Experimentally 
favored

Experimentally 
difficult
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