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Observables and Parameters

“Experiment” “Theory”

Theoretical framework
e.g. quantum mechanics, special relativity

Observables

Model with
certain parameters,

for example the
Standard Model
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Observables and parameters

Observables:

 Do not rely on any theory
 Can/should be measured independent from theoretical model

Parameters:

 Only defined within a particular model
 Numerical value depend on precise definition (“renormalization

scheme”, obvious for coupling constants, holds also true for masses!)

Why do we care about parameters ?

Need to know them as precise as possible to test theoretical
model through comparison:

experimental results theoretical predictions
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How do we extract model parameters ?





Determine theoretical predictions for some set of
observables within your favored model

Compare with measured results and extract/fit the
model parameters

Need to understand the precise definition of
parameters within a model and the role of quantum

corrections

 Renormalization
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Plan

1. The physical picture of renormalization

2. Regularization and renormalization

3. The running of the QCD coupling

4. Interlude: The running of the SM couplings and
vacuum stability

5. Quark masses: definitions and measurements

6. Interlude: The hierarchy problem

7. Summary

(The technical details are skipped if interested in please ask)
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Why do we need renormalization ?

Consider simple example:

measurement of the electric charge

In classical electrodynamics this is done by the use of

a test charge (which should be small…):

+ +

we may use for example a positive test charge and

measure how the charge is scattered
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Why do we need renormalization ?

What happens if we consider quantum field theory ?

the vacuum develops a complicated

structure, i.e. we have vacuum polarization

+

+
–

++ –

+–

+
–

+
–

+
–
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Why do we need renormalization ?

What do we measure when we repeat the experiment

with the test charge ?

Clear enough the test charge will see the bare charge

surrounded/screened by the vacuum polarization

What we actually measure is thus the bare
charge together with the vacuum polarization
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Why do we need renormalization ?

What about the bare charge?

Yes, if we switch off the electric charge

However, switching off the charge, there is now interaction

between the test charge and the charge we want to measure

It is impossible to measure the bare charge !

The bare charge is thus meaningless in an interacting QFT.

Is it possible to get ride of the vacuum polarization ?
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Why do we need renormalization ?

Just a problem of the electric charge ?

No, this is a general property of QFT’s

Another example:

self energy corrections to the mass

If we define the mass to be the location of the pole of the

propagator (so-called pole-mass) we see that higher order

quantum corrections move the pole away from the bare mass!

 more details later…
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Why do we need renormalization ?

The bare parameters are unphysical, they are not
experimentally accessible since we cannot switch

off the interaction

Renormalization is the step to relate the parameters of our
theory to (experimentally) measurable quantities

(“observables”)

Renormalization has nothing to do with infinities, it is a

well defined procedure to relate the parameters to a prescription

how to measure them,

we do not put anything under the carpet !

Strictly speaking renormalization is also needed in finite theories !



Peter Uwer  (HU Berlin)  |  Observables and Parameters ─ Precision measurements |    21.09.2015  | 12

Parameters versus Observables

Important consequence:

The parameters of the theory (quark masses, strong
coupling,…) are in general not observables!

They depend on the scheme to define them

They are related to measurable observables, and are
determined through a fit to a specific theory

Sometimes they are called pseudo-observables

(Note that parameters are only defined in the context,

of a specific theory!)
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Infinities in QFT’s

Using the (unphysical) bare coupling we may obtain infinite
results when calculating loop corrections.

Example:

Naïve power counting:

or

p


(The infinity at zero only occurs since we ignored the masses…)
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Infinities in QFT’s

Infinities may be related to the use of the unphysical bare
couplings (could also be divergent!)

In a renormalizable QFT it is indeed possible to remove all the
divergences by using renormalized (measurable) couplings

Two step procedure:

 Regularize divergences

Absorb them through a redefinition of the fields and
couplings using renormalized quantities




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Infinities in QFT’s

Note: Renormalizability is a non-trivial property which puts a
high constraint on the allowed theories !

 Only couplings with positive or zero mass dimension
are allowed !

Reminder: Mass dimension

Example:

In d dimensional space time:
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Regularization

Introduce “regulator” such, that integrals are finite,

After the renormalization procedure the regulator is removed

Example: Cut-off regulator

Infinite number of different regularization schemes possible,
Which one should we use ?
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Regularization

Note:

Very often regulators break some symmetries of the
underlying theory i.e. gauge symmetry, Poincare invariance,

SUSY etc

 Calculations become more complicated because
simplifying power of symmetries is lost
 Need to make sure that all symmetries are restored when

regulator is removed after renormalization

 A convenient regulator should respect as far as possible
the underlying symmetries
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Dimensional regularization

Observation: Singularities due to high energy behavior of the
measure

 Can be improved by lowering the space time dimension

Singularities appear as poles in
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The renormalization scale

Remember:

Introduce arbitrary mass scale  to keep g dimensionless in d
dimensions:

bare coupling,
divergent

Renormalized (finite)
coupling, depends on

unphysical scale 
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The running coupling constant

Since Zg absorbs divergences due to quantum corrections
we have:

From

we see that gr depends logarithmically on  !

To determine the precise dependence (#) we need to
calculate the quantum corrections
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Quantum corrections for one-loop renormalization

In QCD:

Define different
couplings
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The QCD -function

Define

Using Zg we obtain:

Note:
The value of s has to be extracted from experiment.
However, knowing the value at one scale, theory tells
us how to calculate it at another scale!

 Just solve the differential equation….
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The running of the QCD coupling constant

[PDG2014]
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The strong coupling constant from e+e- hadrons*

Possible to extract s from measured R value !

However:
At which scale do we measure s ??

*) massless

It seems natural to assume s = s(s), how do we decide?

+…+

Strictly speaking not possible since we have only a LO calculation…
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The strong coupling constant from e+e- hadrons

What happens if we change the scale ?

Since s is the only physical scale in the problem we get large higher
order corrections if we use  very different from s!

We may also say: The proper choice of  resums a certain class of
potentially large logs to all orders
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Scale variation as estimate of uncalculated higher orders

Note:

In the order we are calculating theory results must be
independent on the renormalization scheme

Changing the scale in the theoretical predictions generates
scale dependent terms which are formally of higher order
(“residual scale dependence”)

 Higher order corrections must at least cancel this contribution

This is the basis of using scale variation to estimate
higher order corrections
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Renormalization group equations in the SM

“Renormalization group equation”

In complete SM we have more couplings:

RGE’s are coupled:

can be solved numerically…
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Evolution of coupling constants in the SM

Interesting aspects:  Unification of gauge couplings ?
 Vacuum stability

[Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia 14]
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Vacuum stability

Basic idea:

More precise analysis requires to take also higher order corrections to the
potential into account
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Vacuum stability

[Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia 14]
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Quark masses in QCD

In the SM fermion masses are generated through the
Higgs mechanism:

If we study only QCD we may ignore the Higgs mechanism
and use the quark masses as independent parameters

 Mass renormalization
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Self energy corrections and mass renormalization

From the evaluation of the self energy the field and mass
renormalization constant can be determined:

1PI (= one particle irreducible)

+ . . .
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Self energy corrections and mass renormalization

Minimal subtraction scheme (MS):

Schemes are technically simple, however, very unintuitive
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Self energy corrections and mass renormalization

The renormalized MS mass

 becomes scale dependent similar to s

 does not describe the pole of the full propagator

 Has little to do with our intuitive understanding of a quark mass
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The quark propagator and the pole mass scheme

Full propagator

+ . . .

In general

 mr does not describe the location of the pole

Can be enforced using a different renormalization scheme
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The quark propagator and the pole mass scheme

Two conditions to fix the finite terms of

Note:
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Relation between MS and pole mass

In LO:

At least NLO predictions required to distinguish
between the two schemes

[Marquard, Smirnov, Smirnov, Steinhauser ’15]
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Which mass scheme should we use ?

Naïve answer:

It should not matter

In practice:

It does matter !

Possible issues:

 Perturbative expansion may converge better

 Conceptual limitation of achievable precision

„In theory there is no difference between theory and practice.
In practice there is.“ [Yogi Ber(r)a]
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Example: e+e- tt at threshold

LO dotted, NLO dashed, NNLO solid

[Hoang et al, 2000]

Pole mass 1S mass

1S mass: Position of would-be 1S boundstate

Very large corrections using the pole mass scheme
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Intrinsic uncertainty of the pole mass

Renormalon ambiguity in pole mass

Pole mass has intrinsic uncertainty of order QCD

There is no pole in full QCD

[Bigi, Shifman, Uraltsev, Vainshtein 94 Beneke, Braun,94 Smith, Willenbrock 97]

 All e+e- threshold studies use so-called short distance mass
free of renormalon ambiguity
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Requirements for a precise quark mass determination

 Observable should show good sensitivity to m

 Observable must be theoretically calculable

 Observable must be “experimentally accessible”

 Theory uncertainty must be small

Checklist:

Well defined mass scheme

small non-perturbative corrections
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Top-quark mass measurements at Tevatron and LHC

Well defined mass scheme using as observable

 Inclusive cross section

 mlb distribution

 Top-quark pair production in association with an
additional jet

Mass scheme not well defined in

 Kinematical reconstruction

 Template method

 The measured mass is the so-called Monte Carlo mass,
Not well defined in perturbation theory, however expected

to be close to the pole / on-shell mass

(most precise pole mass determination so far)
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MS mass from cross section

Tevatron, D0

Drawback: Limited sensitivity to mt

Mass scheme well defined,
higher orders can be included

Mass scheme well defined,
higher orders can be included

only exp. uncertainties
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Top-quark mass from kinematical reconstruction

[Mangano, Top workshop, July 2012, CERN]
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The hierarchy problem

Remember

individually
divergent

 It doesn’t make sense to speculate about the size of

Situation changes if you treat your theory / theoretical model
as an effective theory only valid up to some cut-off scale 
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The hierarchy problem

 Self energy corrections are finite since divergences are
cut-off at scale 

 “no technical need” to introduce renormalization

 m0 can be finite and thus physically meaning full

Consider corrections to Higgs mass in theory with cut-off

++

 Depending on  very large corrections, since Higgs mass is not
protected by any symmetry, need fine tuning of m0 for large 
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The hierarchy problem

Either we have to fine tune m0 or we have to assume
  1 TeV to avoid large corrections

If fine tuning is not an option, we should see new
physics at 1 TeV

Note:

Argument relies on the assumption of a physical cut-off !

Ignoring problems like neutrino masses, dark matter,
gravity, the SM could be valid up to very high scales…
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Summary

 The different role of observables and parameters
 The physical picture of renormalization
 Role of quantum corrections and the origin of the

scheme dependence
 Examples:
 the running coupling constant
 mass renormalization

Detailed understanding of the interplay between
measurements and theory is crucial for precision physics

and the interpretation of the results !
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Thank you
for your
attention
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