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1. INTRODUCTION

‹ What are statistical methods?

recipes for data reduction: large data set ‹ single number e.g.
‹ md5sum: fingerprint characterizing the data set
‹ arithmetic average: estimate of a common underlying value
‹ standard deviation: measure of uncertainty
statistical method are constructed
‹ neither “right” nor “wrong” – characterized by properties
‹ properties of a method need to be understood

to judge the applicability and to interpret the results
‹ alternative estimates of a common underlying value:

u weighted average or median
‹ alternative estimates of uncertainty:

u smallest 68% quantile or full width at half maximum (FWHM)
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Mean value, standard deviation & variance

A measure for the scatter s of x with PDF f x around a point a is:

s2 dx x a 2 f x

For s to characterize f x , a should be chosen to minimize s :

s2

a
2 dx x a f x 0 i.e. a dx x f x x

The mean value x is the location parameter that minimizes the scatter s .

‹ note:

for symmetric PDFs x is the symmetry point
the scatter around x is called “standard deviation”

2 is the “variance” of a PDF
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Expectation values

Given a PDF f x and a function a x , the expectation value a is:

a dx a x f x

mapping of functions f x to a real numbers

‹ examples:

x mean value

x x 2 variance

important property: linearity i.e. A B A B

‹ application e.g.:

x x 2 x 2 2x x x 2 x 2 x 2
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2. UNCERTAINTIES & ERROR PROPAGATION

‹ what are “uncertainties”?

measures of how well one knows e.g. a constant of nature
engineer: tolerance = maximum possible deviation
physicist: many different conventions
‹ standard deviation
‹ 3- uncertainties
‹ confidence level intervals containing the true value

u in a certain fraction of experiments (frequentist)
u with a certain probability (bayesian)

‹ ask the professionals
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Joint Committee for Guides in Metrology

WG 1 (JCGM 100:2008, Recommendation INC-1 (1980))

‹ Expression of experimental uncertainties

1 The uncertainty in the result of a measurement generally consists of several
components which may be grouped into two categories according to the
way in which their numerical value is estimated:

A those which are evaluated by statistical methods,
B those which are evaluated by other means.

There is not always a simple correspondence between the classification into
categories A or B and the previously used classification into“random” and
“systematic” uncertainties. The term “systematic uncertainty” can be
misleading and should be avoided. Any detailed report of the uncertainty
should consist of a complete list of the components, specifying for each the
method used to obtain its numerical value.
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2 The components in category A are characterized by the estimated variances
s2
i (or the estimated “standard deviations” si ) and the number of degrees of

freedom i . Where appropriate, the covariances should be given.

3 The components in category B should be characterized by quantities u2
j ,

which may be considered as approximations to the corresponding
variances, the existence of which is assumed. The quantities u2

j may be
treated like variances and the quantities uj like standard deviations. Where
appropriate, the covariances should be treated in a similar way.

4 The combined uncertainty should be characterized by the numerical value
obtained by applying the usual method for the combination of variances.
The combined uncertainty and its components should be expressed in the
form of “standard deviations”.

5 If, for particular applications, it is necessary to multiply the combined
uncertainty by a factor to obtain an overall uncertainty, the multiplying factor
used must always be stated.

(end of quote)
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Discussion

‹ using standard deviations to define uncertainties:

well defined simple procedures how to handle them
‹ when propagating uncertainties into derived variables
‹ for the combination of independent measurements
rigorous limits on probability contents in the tails
asymptotically gaussian behaviour
no (little) danger of mis-interpretation
profit from simple analytical properties of variances (linear functional)

‹ using confidence level intervals to define uncertainties:

conservation of probability for monotonic transformations
difficult to combine – requires likelihood function

v focus first on variances/standard deviations!
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The Bienaymé-Chebycheff-inequality

‹ probability content in the tails of a distribution

Take any PDF f x , function w x 0 and x -region with w x C :

w dx f x w x
w x C

dx f x w x C
w x C

dx f x

result: p x with w x C
w
C

special choices: w x x x 2 and C k2 2:

pk p x with x x 2 k2 2 1
k2

the probability beyond k around x is at most 1 k2

gaussian PDF: p1 p2 p3 0 317 0 0555 0 0027
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Error propagation - setting the stage

‹ definitions:

x : vector of observed quantities

x : expectation values of x - assumed to be the true values

C x : covariance matrix of x - assumed to be known

y g x : vector of derived quantities

y true g x : true vector of derived quantities

C y : covariance matrix of y - to be determined

v study properties of the transition x y
‹ expectation values

‹ uncertainties
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Expectation values of transformed variables

‹ the expectation value of y is biased: y y true

Taylor expansion for a single component around x shows

yk gk x
i

gk x
xi

xi xi

1
2

i j

2gk x
xi xj

xi xi xj xj

and taking the expectation value yields:

yk y true
k

1
2

i j

2gk x
xi xj

Cij x

v discussion
in many cases the bias is small and can be neglected
the leading order correction in principle is known
don’t average biased estimates of y - average the unbiased x
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Numerical example

‹ transformation of a gaussian distributed x y xn

Mean        1
RMS       0.2

x
0 0.5 1 1.5 20

100
200
300
400
500
600
700
800
900

310×
Mean        1
RMS       0.2

Mean     1.04
RMS    0.4039

2y=x
0 1 2 3 4

Mean     1.04
RMS    0.4039

I
small non-linearities or small are uncritical
biases are usually small compared to standard deviations
bias correction is needed when averaging transformed values
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Gaussian error propagation

‹ leading order treatment in n dimensions

yk gk x
n

i 1

gk x
xi

xi xi expansion around x

gk x
n

i 1

gk x
xi

xi xi derivatives taken at x

‹ substitute g x y true

‹ covariance matrix estimate for bias corrected(!) transformed values

Ckl y yk y true
k yl y true

l
n

i j 1

gk

xi

gl

xj
xi xi xj xj

n

i j 1

gk

xi

gl

xj
Cij x
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Matrix notation

For the transformation y g x with Jacobian

M x and matrix elements Mij
gi

xj

the transformed covariance matrix becomes

Ckl y
i j

MkiMljCij x or C y M x C x MT x

the argument to M defines that the derivatives are w.r.t. x
for invertible M x no information is lost in the transformation
chaining transformations leads to

y h g x and Mij

n

k 1

hi

gk

gk

xj
or M M g M x

‹ identical results if doing transformations in one or many steps

Statistical Methods - Uncertainties & Error Propagation M. Schmelling, School on Precision Measurements, September 22, 2015 15



Numerical studies (i)

‹ estimated and exact standard deviations for x y xn

Mean   0.9999
RMS    0.09998

x
0 0.5 1 1.5 20

10000
20000
30000
40000
50000
60000
70000 Mean   0.9999

RMS    0.09998
Mean     1.01
RMS    0.2005

2y=x
0 1 2 3 4

Mean     1.01
RMS    0.2005

Mean      0.2
RMS      0.02

estimated stdev
0 0.2 0.4 0.6 0.8

Mean      0.2
RMS      0.02

I
average error estimates are OK
actual values scatter proportional to relative errors of x

v uncertainties are inherently uncertain
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Numerical studies (ii)

‹ toy-MC and exact standard deviations for x y xn

Fluctuate every measured value x by its known variance and estimate the
standard deviation of y from the transformed x -values.

Mean        1
RMS    0.1002

x
0 0.5 1 1.5 20

5000

10000

15000

20000

25000 Mean        1
RMS    0.1002

Mean     1.01
RMS     0.201

2y=x
0 1 2 3 4

Mean     1.01
RMS     0.201

Mean   0.2007
RMS    0.02051

estimated stdev
0 0.2 0.4 0.6 0.8

Mean   0.2007
RMS    0.02051

I
similar behaviour as analytical results (slightly larger scatter)
easy to implement as no derivatives are required
small sensitivity to PDF of fluctuations

Statistical Methods - Uncertainties & Error Propagation M. Schmelling, School on Precision Measurements, September 22, 2015 17

file:///Users/ja_old/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/B22EBE84-B47D-4EBC-B106-6E8B20F77972/demos/errprop3.cxx


Summary: dealing with standard deviations

‹ linear error propagation:

requires only covariance matrix of the input
exact for linear and approximate for non-linear transformations
higher order corrections need higher order moments of the input
‹ behaviour like an asymptotic series ‹ numerically diverging
‹ no improvement w.r.t. leading order treatment
consistent when chaining transformations
equivalent quality as error propagation via toy-MC
the non-constant Jacobian of non-linear transformations induces
errors for transformed variances - even for known input variances
non-linear transformations induce bias
‹ leading order correction of transformed values is recommended
‹ no bias correction is needed for transformed covariance matrices
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Confidence level intervals

‹ alternative ways to quantify uncertainties

no longer distribution-free – the underlying PDFs need to be known

propagation of confidence level intervals is easy

combination of uncertainties not well defined

‹ common practice:

a 42 8
3

6
4 42 10

5

‹ little or no theoretical backing

‹ implies the concept of asymmetric variance

‹ implies that confidence level intervals behave like variances

different concepts in bayesian and frequentist frameworks

a simple case study ‹
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Poisson measurements without background

‹ setting the scene:

A counting experiment has observed n events. The experiment recorded
independent random processes that occur with a constant probability per
time interval, such as e.g. radiocative decays. It thus is known that n is a
poissonian distributed random variable, i.e. the probability Pn to observe
n events is:

Pn P n e
n

n

‹ question:

What can be inferred about the expectation value ?
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Example: n 2

‹ quick check of a few hypotheses

‹ P 2 0 1 0 0045
‹ P 2 1 0 0 1839
‹ P 2 10 0 0023
in principle any value for is possible

a value O 1 seems more plausible

v try to be quantitative about a certain range of

discuss

‹ the bayesian approach

‹ the frequentist approach
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The bayesian approach

‹ treat as a random variable

formally possible even if has a well defined true physical value
interpret the PDF of as encoding the knowledge about
use Bayes’ theorem to improve the knowledge by the measurement:

P n P n P n P

‹ P : prior PDF of - to be defined
‹ P n : Likelihood function
‹ P n : probability for n , unknown constant
‹ P n : posterior PDF for after the measurement

v it follows

P n P n P and thus P n
P n P

d P n P
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Application of the bayesian approach

‹ choice of prior distribution

P k

ad hoc - but allows to test sensitivity to prior, special cases:
k 0: equal probability for all possible values
k 1 Jeffries prior: invariance w.r.t scale-transformations

P n
e n k

0
d e n k

e
n k

n k

results ‹
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Bayesian 90% confidence level intervals

µ
0 1 2 3 4 5 6 7 8 9 10

|n
=2

)
µ

po
ste

rio
r P

D
F 

P(

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

µJeffries prior 1/

uniform prior

90 confidence intervals are regions with 90 probability content
‹ many possibilities - usually take the smallest interval
most probable values and confidence intervals sensitive to prior
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Discussion

bayesian approach formalizes gain of knowledge by measurement
‹ posterior of first measurement can be prior of second, etc.

P n2 n1 P n2 P n1 P

P n2 n1 P

P n2 P1 with P1 P n1 P

consistent if a non-uniform prior (e.g. Jeffries’) is used only once
‹ avoid non-uniform priors for single measurements
‹ if needed, use a non-uniform prior once when combining results
‹ possible if likelihood functions are published
caveat: uniformity depends on the definition of the parameter
‹ example: uniform in is non-uniform in
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The frequentist approach

‹ Likelihood-function-only based “Neyman construction”

start from table of probabilities for any observation and any vaue

n
0 1 2 3 4 5 6 7 8 9

µ

0

1

2

3

4

5

6

7

8

9

10
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The Neyman construction (i)

determine the shortest 90 horizontal range for each

n
0 1 2 3 4 5 6 7 8 9

µ

0

1

2

3

4

5

6

7

8

9

10
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The Neyman construction (ii)

given n , take the range of with n in the 90 probability range

n
0 1 2 3 4 5 6 7 8 9

µ

0

1

2

3

4

5

6

7

8

9

10
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Properties of the Neyman construction

a fixed interval for is assigned to every measurement n
every interval contains the true value with 90 probability
‹ false from the frequentist point of view – the true value is either

inside or outside; there are no probabilities for this.
from an ensemble of measurements (at least) 90 of the confidence
level intervals are expected to contain the true value
‹ true – for any true , different measurements will find different

values n and thus will quote different intervals. Take for example
4 25. It is contained in the intervals of n 1 7, and by

construction, (at least) 90 of the measurements are in that
range. Analogous reasoning holds for all .

the interval contains no information about preferred values!
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Discussion

‹ some common themes

bayesian and frequentist methods define regions l n h n
for each observation n there is a well defined interval
another common region for 68 confidence level is n n

‹ further studies

compare the intervals defined by the different schemes
MC check which fraction of intervals contain the true value
‹ do the check as a function of the unknown true
‹ check that the frequentists intervals have coverage
‹ calculate coverage also for bayesian intervals

u even if bayesians do not care about coverage
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68.3% confidence level intervals

obsn
0 5 10 15 20 25 30 35

µ
68

%
 C

L 
in

te
rv

al
 fo

r 

0

10

20

30

40

50 frequentist intervals
bayesian intervals

 intervalsn ±n 
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Coverage of 68.3% confidence level intervals

µtrue 
0 2 4 6 8 10 12 14 16 18 20

co
ve

ra
ge

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

frequentist intervals
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Coverage of 68.3% confidence level intervals

µtrue 
0 2 4 6 8 10 12 14 16 18 20

co
ve

ra
ge

0.5
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0.6
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0.7

0.75
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bayesian intervals
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Coverage of 68.3% confidence level intervals

µtrue 
0 2 4 6 8 10 12 14 16 18 20

co
ve
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0.9
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Concluding remarks

bayesians makes statements about the theory
‹ “The true value is with 90 probability

inside the 90 confidence level interval”
frequentists makes statements about the data
‹ “90 of the 90 confidence level intervals (which are a function

of the data) are expected to contain the true value ”
‹ these confidence level intervals have “coverage”
‹ for continuous PDFs exact coverage can be obtained
‹ discrete probabilities are chosen to have over-coverage
bayesians & frequentists base CL-intervals on the likelihood function
confidence level intervals from maximum likelihood or least squares
fits based on 2 or lnL are exact only for gaussian PDFs. In
most cases they don’t have coverage.
treating confidence level intervals like variances is questionable
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3. LEAST SQUARES FOR PROFESSIONALS

‹ extract physics parameters from a set of measurements

v properties which are assumed to be satisfied:
individual measurements fluctuate with known variance
individual measurements are unbiased

‹ measurements of the same physical quantity

scenario
‹ n measurements yi with i 1 2 n
‹ all measurements fluctuate around an unknown true value
‹ the measurements have standard deviations i

each measurement is an estimate for with uncertainty i

task: combine the measurements for a better estimate of

‹ try the arithmetic average
1
n

n

i 1
yi

Statistical Methods - Least Squares for Professionals M. Schmelling, School on Precision Measurements, September 22, 2015 36



Numerical simulation

measurement
0 5 10 15 20 25

y

0.5

1

1.5

Mean   0.9999
RMS    0.2498

1st y
0 0.5 1 1.5 20

5000
10000
15000
20000
25000 Mean   0.9999

RMS    0.2498
Mean        1
RMS    0.04994

µ
0 0.5 1 1.5 20

20
40
60
80

100
120
140

310×
Mean        1
RMS    0.04994

I
big improvements if all variances are the same
less/no improvement w.r.t. best measurement for different variances
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The weighted average

‹ modification of the arithmetic average

n

i 1
wiyi with

n

i 1
wi 1

consistent results for arbitrary weights: if yi

try to find weights which minimize the variance of

2
n

i 1
w2

i
2
i min

constrained minimization problem
minimum for wi 1 2

i

recovers unweighted average if all i are the same
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Numerical simulation

measurement
0 5 10 15 20 25

y

0

5

Mean        1
RMS    0.2498

1st y
0 0.5 1 1.5 20

1000
2000
3000
4000
5000
6000
7000 Mean        1

RMS    0.2498
Mean   0.9997
RMS    0.1765

µ
0 0.5 1 1.5 20

2000

4000

6000

8000

10000 Mean   0.9997
RMS    0.1765

I
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The road to Least Squares

‹ use case: straight line fit

Consider uncorrelated measurements yi i 1 n with known
variances 2

i , recorded for certain values xi of a control paramater x . The
expectation value of the measurements is yi a0 a1xi , where the
parameters a0 and a1 are not known.

‹ wanted: a method to find estimates a0 and a1 for a0 and a1

v discussion
control parameters xi are known
the measurements yi are unbiased
variances 2

i are known
exact shape of PDFs describing the fluctuations of the yi is irrelevant
‹ any PDF with variance 2

i would do
‹ different measurements can fluctuate with different PDFs
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Constructing parameter estimates

‹ the case of two measurements

y1 a0 a1 x1 and y1 y1 r1

y2 a0 a1 x2 and y2 y2 r2

system of linear equations relating yi and xi

measurements yi have random deviation ri from yi

unbiasedness of yi implies ri 0
estimate a0 and a1 by assuming ri 0, i.e. make the ansatz:

y1 a0 a1 x1

y2 a0 a1 x2
v result:

a0 y1 a1x1
x2

x2 x1
y1

x1

x2 x1
y2

a1
y2 y1

x2 x1

1
x2 x1

y1
1

x2 x1
y2
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Discussion

‹ does the estimate make sense?

parameter estimates are linear combinations of the measurements
parameter estimates are random variables
parameter estimates fluctuate with the measurements
check the expectation values

a0
1

x2 x1
x2y1 x1y2

1
x2 x1

x2 y1 x1 y2 a0

a1
1

x2 x1
y1 y2

1
x2 x1

y1 y2 a1

v conclusion:
‹ the estimates for the unknown parameters are unbiased
‹ the parameter errors can be determined by error propagation

yes, the parameter estimates make sense!
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Generalization

‹ the case of n 2 measurements

Take the lessons learnt from the case n 2 and try to estimate the
unknown parameters by a linear combination of the measurements.

a0

n

i 1
pi yi and a1

n

i 1
qi yi

this is a convenient ansatz, not derived from any “first principles”
it is not the only possible generalization of the case n 2
nor will it give the best possible estimates for a0 and a1

but it is simple and robust, requiring only minimal input
and turns out to be surprisingly powerful

‹ determine parameters piand qi
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Optimizing the parameter estimates

‹ exploit the freedom of the linear ansatz to

make sure that the estimates are unbiased
and that the estimates are as accurate as possible

v condition for unbiased estimates:

a0

n

i 1
pi yi

n

i 1
pi a0 a1 xi a0

n

i 1
pi a1

n

i 1
pi xi a0

a1

n

i 1
qi yi

n

i 1
qi a0 a1 xi a0

n

i 1
qi a1

n

i 1
qi xi a1

one obtains 4 conditions:
n

i 1
pi 1

n

i 1
qi 0

n

i 1
pi xi 0

n

i 1
qi xi 1
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Discussion

only 4 constraints for 2n parameters
easy to satisfy both for pi and qi

‹ start from a set of random numbers e.g. for pi

‹ subtract a constant such that the “0-constraint” is satisfied
‹ scale the numbers such that the “1-constraint” is satisfied
additional criterion needed to fix the coefficients
require minimal variance for the parameter estimates
‹ constrained minimization problem

v variance of parameter estimates from error propagation:

2 a0

n

i 1

a0

yi

2
2
i

n

i 1
p2
i

2
i and 2 a1

n

i 1
q2
i

2
i

‹ result of a constrained minimization
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BLUE (Best Linear Unbiased Estimator)

‹ a little algebra yields the textbook formulae for straight line fits:

Expressed through the following sums

S 1 x xx y xy

n

i 1

1 xi xi xi yi xi yi
2
i

and D S1Sxx S2
x

the best-fit estimates are

a0
1
D

SxxSy SxSxy and a1
1
D

S1Sxy SxSy

and error propagation yields the covariance matrix elements

Ckl a
n

i 1

ak

yi

al

yi

2
i

C00 a
S1

D
, C11 a

Sxx

D
and C01 a

Sx

D
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The cost function

‹ re-write the solution derived before

a0
1
D

SxxSy SxSxy and a1
1
D

S1Sxy SxSy

to make the structure more evident:

a0

a1

1
D

Sxx Sx

Sx S1

Sy

Sxy
‹

S1 Sx

Sx Sxx

a0

a1

Sy

Sxy

or
S1 a0 Sx a1 Sy 0

Sx a0 Sxx a1 Sxy 0

Two equations which define the best fit parameters as the zero of a
two-dimensional function, or equivalently, as a stationary point (e.g.
minimum) of its primitive 2.
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Constructing the cost function

‹ integration:

2 S1a2
0 Sxxa2

1 2Sxa0a1 2Sya0 2Sxya1 K

quadratic form with a free integration constant K
asking 2

min 0 yields K y2
i

2
i

‹ ideal fits have zero cost
‹ allows to interpret the best-fit 2 as a quality of fit

Result:

2
n

i 1

yi a0 a1xi
2

2
i

n

i 1

yi fi a0 a1
2

2
i

with fi a0 a1 a0 a1xi
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Discussion

minimize data model measured in units of standard deviations
the derivation was for uncorrelated data points yi

noting 1 2
i C 1

ii y , the general expression becomes

2
n

i j 1
yi fi a0 a1 C 1

ij y yj fj a0 a1

‹ using matrix notation, with Cy C y ,
2 rT C 1

y r with r y f a0 a1

invariance under linear transformations L

r L r , Cy L Cy LT , C 1
y LT 1 C 1

y L 1

and thus 2 2

‹ allows simplification by diagonalizing C y
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Linear models

‹ (average) measurements are linear functions of parameters a
2 y Ma T C 1

y y Ma

yTC 1
y y 2aT MTC 1

y y aT MTC 1
y M a

The best fit parameters are linear functions of the measurements

a Q y with Q MTC 1
y M

1
MTC 1

y

with covariance matrix

Ca Q Cy QT MTC 1
y M

1 1
2

2

a2

1

using C 1
y in the 2 function gives the best fit (BLUE)

other constant matrices are possible as well
use Ca QCyQT to get the correct covariance matrix
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Properties of the Least Squares Method

unbiased parameter estimates (for any constant matrix C 1
y )

y Matrue ‹ a MTC 1
y M

1
MTC 1

y y atrue

minimum 2 value
2
min yTC 1

y y aT MTC 1
y M a

Tr C 1
y yyT C 1

a aaT

expectation value 2
min (using Cx xxT x x T )

2
min Tr C 1

y Cy y y T C 1
a Ca a a T

ny na Tr C 1
y y y T C 1

a a a T

ny na

The last step used C 1
a MTC 1

y M and M a y .
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Summary: Least Squares Method

formulation via the cost function
‹ derived for linear models and explains the name “least squares”
‹ easily generalizes to multi-dimensional and non-linear problems
least squares are a distribution-free way for parameter estimates
‹ requires only data and covariance matrix of the data
‹ weight matrix C 1 must be fixed
‹ approximately gaussian errors due to the central limit theorem
for linear models
‹ unbiased estimates of the true parameters
‹ parameter estimates are linear combinations of the measurements
when using the inverse of the covariance matrix as weight matrix
‹ linear estimates with minimal variance
‹ independent of the shape of the PDF of the fluctuations
‹ goodness-of-fit criterion 2

min Ndata Npar Nndf
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Numerical example

‹ straight line fit: y a0 a1x
expectation values of measurements y x : y 10 10 x
take 20 equidistant points in the range 0 x 2
measurements fluctuate with rms 4 around the expectation value
‹ gaussian distribution
‹ exponential distribution
‹ uniform distribution
same covariance matrix and 2

min 18 in all cases

C a
3 206 2 406
2 406 2 406

a0 1 7905
a1 1 5511 0 8663

study also poisson distributed measurements
‹ fit with correct standard deviations: y
‹ fit with estimated standard deviations: y
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Illustration

x0 0.5 1 1.5 2

y

0

10

20

30

40 Mean   4.114e-06
RMS     3.999

fluctuations
-20 -10 0 10 20

Mean   4.114e-06
RMS     3.999

0a5 10 15

1a

5

10

15

Mean       10
RMS     1.791

0a
5 10 15

Mean       10
RMS     1.791

Mean       10
RMS     1.551

1a
5 10 15

Mean       10
RMS     1.551

Mean       18
RMS     5.999

min
2χ

0 20 40 60 80

Mean       18
RMS     5.999

I
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Least squares for low statistics

‹ introductory remarks

common wisdom: least squares fits need

‹ gaussian fluctuations

‹ sufficiently large event counts for poisson distributed data

in the derivation of the method none of the above entered

‹ only proper variance estimates were assumed

‹ the variances are treated as constants in the 2 minimization

‹ the variance estimates should not be correlated to the data

case study, keeping an eye on those points when doing fits ‹
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Numerical example

‹ determination of the lifetime of an unstable particle

lifetime distribution
dn
dt

1
e t with 1 ns

MC study of test experiments with fixed number N of decays
‹ histogram representation of the measurement
‹ 100 bins for 0 t 10 ns
optimal parameter estimate:

1
N

N

i 1
ti for 1: 1

1
N

parametric model for bin contents ni in Least Squares fit

fi N
bin i

dt
dn
dt
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Fit scenarios

‹ test different weight-assignments

wi 1 for all bins
‹ unsophisticated but hopefully robust unweighted fit
wi 1 for all bins with non-zero entries
‹ pretend that empty bins don’t have informations
wi 1 ni for all bins with non-zero entries
‹ use empirical variance estimates
wi 1 fi for all bins
‹ naive way to use the theoretical variances
iterative fit with w 0 1 and wi m 1 fi m 1 for all bins
‹ proper way to use the theoretical variances
‹ implements that variances must be fixed in minimization
‹ weak correlation between variance estimates and data
for comparison: simple arithmetic mean of all entries
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Monte Carlo simulation

‹ best fit performance for N 1000 events

t (ns)
0 1 2 3 4 5 6 7 8 9 10

 e
nt

rie
s 

/ 0
.1

 n
s

0
20
40
60
80

100
120

µ
0.8 1 1.2 1.4

Mean        1
RMS    0.03147

mean value

I
check standard deviation and bias of fitted
‹ as a function of available statistics
‹ for the different choices of the weight function
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Performance comparison

‹ parameter estimates for N 1000 events

µ
0.8 1 1.2 1.4

Mean    1.001
RMS    0.04417

w=1, all bins

µ
0.8 1 1.2 1.4

Mean    1.002
RMS    0.04452

w=1, non-zero bins

µ
0.8 1 1.2 1.4

Mean   0.9637
RMS    0.04022

w=1/n, non-zero bins

µ
0.8 1 1.2 1.4

Mean    1.104
RMS    0.05552

w=1/f, all bins

µ
0.8 1 1.2 1.4

Mean        1
RMS    0.03162

, all binsm-1w=1/f

µ
0.8 1 1.2 1.4

Mean        1
RMS    0.03154

mean value
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Performance comparison

‹ parameter estimates for N 10 events

µ
0 2 4

Mean     1.07
RMS     0.457

w=1, all bins

µ
0 2 4

Mean   0.7042
RMS     0.227

w=1, non-zero bins

µ
0 2 4

Mean   0.7848
RMS    0.1901

w=1/n, non-zero bins

µ
0 2 4

Mean    1.506
RMS    0.5709

w=1/f, all bins

µ
0 2 4

Mean   0.9948
RMS     0.329

, all binsm-1w=1/f

µ
0 2 4

Mean        1
RMS    0.3175

mean value
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Conclusions

‹ properties of different weight-assignments

wi 1 for all bins
‹ OK, generally unbiased, but not with optimal precision
‹ do not use Hessian of 2 function for error estimates
wi 1 for non-zero bins
‹ needless loss of information and bias at low statistics
wi 1 ni for all bins with non-zero entries
‹ biased – violates the least squares ansatz
wi 1 fi for all bins
‹ biased – violates the least squares ansatz
iterative fit with w 0 1 and wi m 1 fi m 1 for all bins
‹ close to optimum (maximum likelihood fit)
‹ works also for low statistics
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Exercises
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Error propagation

Consider two parameters with true values a true
0 22 and a true

1 88.
Actual measurements a0 and a1 scatter around the true values with
standard deviations 0 4 and 1 8. The correlation coefficient
between them is C01 C00C11 0 5. From a0 and a1 the value
b a1 a0 shall be determined.

1) Determine analytically for a pair a0 a1 the bias
corrected value of b and it’s uncertainty.

2) Assuming gaussian fluctuations, generate pairs a0 a1 and
histogram the ratio a1 a0, the bias corrected ratio and the estimate
of the uncertainty.
If x1 and x2 are independent random numbers with mean value zero
and unit variance, a pair of correlated random numbers y1 y2 is
obtained by y1 x1 y2 x1 x2 1 2 .
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Solution: Error propagation

‹ uncertainty of b a1 a0

2 b
b
a0

2
C00 2

b
a0

b
a1

C01
b
a1

2
C11

result:

2 b
a2

1
a4

0
16

a1

a3
0

32
1
a2

0
64

‹ bias (to be subtracted)

B
1
2

2b
a2

0
C00 2

2b
a0 a1

C01

2b
a2

1
C11

result:

B
a1

a3
0

16
1
a2

0
16
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C++ code

‹ simulation of a single measurement

double x1 = rndm.Gaus();

double x2 = rndm.Gaus();

double a0 = av0 + sd0

*

x1;

double a1 = av1 + sd1

*

(rho

*

x1+x2

*

sqrt(1.-rho

*

rho));

double b = a1/a0;

double db = sqrt(C00

*

a1

*

a1/(a0

*

a0)-2

*

C01

*

a1/a0+C11)/a0;

double B = (C00

*

a1/a0 - C01)/(a0

*

a0);
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Numerical results

5 10 15 20 25 30 35 40
20
40
60
80

100
120
140
160

0 vs a1a
Mean    4.174
RMS      1.08

0 1 2 3 4 5 6 7 8 9 100
5000

10000
15000
20000
25000
30000
35000
40000
45000 Mean    4.174

RMS      1.08

0/a1b=a

Mean    1.067
RMS    0.4512

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50
10000
20000
30000
40000
50000
60000
70000 Mean    1.067

RMS    0.4512

bσ
Mean    3.975
RMS    0.9588

0 1 2 3 4 5 6 7 8 9 100

10000

20000

30000

40000

50000 Mean    3.975
RMS    0.9588

-bias0/a1b=a
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Least Squares Fits

Consider yk , k 1 2 10 poisson-distributed measurements with
expectation values k a k . The parameter a shall be determined by a
least squares fit. Consider the following 2 functions:

2
10

k 1
wk yk ak 2 with wk 1

1
yk

1
a k

1
an 1k

1
k

1) Determine analytically the best fit values a
for the various weight functions

2) Generate toys for a 1 2 4 and determine
the distribution of a for the various options.
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Solution: Least Squares Fits

‹ analytical calculation

2
10

k 1
wk yk ak 2

10

k 1
wky2

k 2awkykk a2wkk2

Swyy 2aSwyk a2Swkk

one obtains:

2 wk 1 Syy 2aSyk a2Skk
2 wk 1 yk Sy 2aSk a2Skk y
2 wk 1 ak 1 a Syy k 2Sy aSk

2 wk 1 k Syy k 2aSy a2Sk

The iterated weight function wk 1 an 1k gives the same estimate as
wk 1 k , since the 2 minimum is not affected by a global scale factor.
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Least squares estimators

‹ best fit a values

a wk 1
Syk

Skk

a wk 1 yk
Sk

Skk y

a wk 1 ak
Syy k

Sk

a wk 1 k
Sy

Sk

All estimators have the correct dimension a y k , which is required
for y ak . The first and the last estimator are expected to be unbiased,
the two middle ones might have problems.
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C++ code

‹ simulation of a single measurement

Sy =Sk = Syk = Skk = Syyk = Sk1 = Skky = 0.;

for(int n=1; n<=10; ++n) {

double k = double(n);

double y = rndm.Poisson(a

*

k);

Sy += y;

Sk += k;

Syk += y

*

k;

Skk += k

*

k;

Syyk += y

*

y/k;

if(y>0.) Sk1 += k;

if(y>0.) Skky += k

*

k/y;

}

ha0->Fill(Syk/Skk);

ha1->Fill(Sk1/Skky);

ha2->Fill(sqrt(Syyk/Sk));

ha3->Fill(Sy/Sk);
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Numerical results for a 1

Mean        1
RMS    0.1428

0 1 2 3 4 5 6 7 8 9 100
10000
20000
30000
40000
50000
60000 Mean        1

RMS    0.1428

(w=1)a
Mean    0.865
RMS    0.1529

0 1 2 3 4 5 6 7 8 9 100

10000

20000

30000

40000

50000 Mean    0.865
RMS    0.1529

(w=1/y)a

Mean    1.078
RMS    0.1399

0 1 2 3 4 5 6 7 8 9 100

10000
20000

30000

40000
50000

Mean    1.078
RMS    0.1399

(w=1/ak)a
Mean        1
RMS    0.1347

0 1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

310×
Mean        1
RMS    0.1347

(w=1/k)a
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Numerical results for a 2

Mean        2
RMS    0.2019

0 1 2 3 4 5 6 7 8 9 100
5000

10000
15000
20000
25000
30000
35000
40000 Mean        2

RMS    0.2019

(w=1)a
Mean    1.835
RMS    0.2117

0 1 2 3 4 5 6 7 8 9 100
5000

10000
15000
20000
25000
30000
35000
40000 Mean    1.835

RMS    0.2117

(w=1/y)a

Mean     2.08
RMS    0.1944

0 1 2 3 4 5 6 7 8 9 100
5000

10000
15000
20000
25000
30000
35000
40000 Mean     2.08

RMS    0.1944

(w=1/ak)a
Mean        2
RMS    0.1906

0 1 2 3 4 5 6 7 8 9 100
10000
20000
30000
40000
50000
60000
70000 Mean        2

RMS    0.1906

(w=1/k)a
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Numerical results for a 4

Mean        4
RMS    0.2858

0 1 2 3 4 5 6 7 8 9 100
5000

10000
15000
20000
25000
30000 Mean        4

RMS    0.2858

(w=1)a
Mean    3.823
RMS     0.287

0 1 2 3 4 5 6 7 8 9 100

5000

10000

15000

20000

25000
Mean    3.823
RMS     0.287

(w=1/y)a

Mean    4.081
RMS    0.2723

0 1 2 3 4 5 6 7 8 9 100
5000

10000
15000
20000
25000
30000 Mean    4.081

RMS    0.2723

(w=1/ak)a
Mean        4
RMS    0.2696

0 1 2 3 4 5 6 7 8 9 100

10000

20000

30000

40000

50000 Mean        4
RMS    0.2696

(w=1/k)a
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