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A classic joke

I A mathematician, an engineer and a physicist are all presented with a cow

I They are asked to use the cow to determine the average mass of all cows

1. The mathematician: cow function m =
∫

V
D(x , y , z)dxdydz

2. The engineer: submerge the cow in water

3. The physicist: assume the cow is a uniform sphere of water m = 4
3
πr 3 · 1kg/m3
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What’s the point?

I The point is that systematic uncertainties are not particularly well defined as a
problem

I As physicists we usually do as simple a job as we can with the statistics we have
available

I We ALWAYS make assumptions - you cannot possibly know everything there is to
know about an experiment.

I As long as you can quantify how big an effect these assumptions COULD have (and
correct for them)

I There are many ways of evaluating them - shall we evaluate them for the cow?
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Jargon

This is some jargon which I assume you already know

If you don’t know what one of these means then SPEAK NOW! (I won’t bite[i])
Cow A large farm yard mammal used mainly for the production of milk, cheese,

yoghurt, beef and leather
PDF Probability Density Function
Likelihood Likelihood function
DLL (∆LL) Difference in log likelihood from minimum
χ2 (∆χ2) Goodness of fit (difference in χ2 from minimum)
MC Monte Carlo simulation
Toy A pseudo-experiment generated from a distribution (PDF) i.e. a single MC

event
Toys A set of the above
Pull Difference between fitted value and true (generated) value divided by the

uncertainty, (µ̂− µ)/σ
I also assume you have seen the following:

I Central limit theorem (i.e why things are Gaussian distributed)

I Propagation of uncertainties

[i]at least not hard ;)
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Precision vs Accuracy

I Is it better to be accurate or precise?

I Statistical / systematic uncertainty
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Precision vs Accuracy

In any experiment there are usually two sources of error

Statistical - accuracy

I The inherent random error for an experiment
I Related to the accuracy of the equipment

I A standard wrist watch measures to within one
second

I Also related to the size of the data sample

I Should be randomly distributed around the true
value

Systematic - precision
I For whatever reason measurement is simply

wrong
I Watch is running ten minutes slow

I Will be wrong everytime

I Offset from the true value

I Typically has a statistical component

I Usually we correct for them and the statistical
uncertainty on the correction is the systematic
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Precision vs Accuracy

I The picture in real data analysis is usually a mixture of these two

I Often use a subset of data for calibration, checks and systematic study
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Systematic effect and systematic error

Know the distinction

I A systematic effect is a general category of things which can cause a shift or bias in
your result

I energy resolution
I background
I efficiency
I dead time
I etc.

I A systematic error is the uncertainty in the estimation of a systematic effect
I Correct for the systematic effect
I The uncertainty on the correction is the systematic uncertainty
I Sometimes you cannot correct so you have to try and cover with an appropriate

uncertainty

Know the difference between a check and a systematic

I Checks can be things like
I Split data into seperate years / magnet config / run numbers and check consistency

I A check is not a systematic study

I If you do a check and cannot explain the outcome then the last resort should be a
systematic uncertainty
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Which systematics are important?

How do I know which systematics to include?

YOU DON’T!

Known unknowns

I Think!

I Talk to colleagues

I Talk to the most miserable and aggersive collaborator you know

I Check to see what other similar analyses have done

I Keep thinking

Unknown unknowns

I These are what the checks are for

I Checks should convince you (and others) you haven’t missed something that can
have a big effect

I Subsequently think of good checks

I Should be in a position where anything you might have missed must have a small
effect such that it doesn’t need to be considered
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What reduces uncertainties?

Statistical

I More data / more events ?

I More signal events, σS ≈ S/(
√
S + B)

I Fewer free parameters

Systematic

I Often more data also (control channels, alignment etc.)

I Better simulation

I Better ideas (data driven methods)

I Understanding your equipment
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Estimating systematic errors

What the experts say

Louis Lyons

“In general, there are no simple rules or prescriptions for
eliminating systematic errors. To a large extent it is simply a
matter of common sense plus experience.”

Statistics for nuclear and particle physicists

Roger Barlow

“Systematic errors cover a spectrum from the mildly
inconvenient to the downright catastrophic”

Statistics: A guide to the use of statistical methods in the
physical sciences
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Evaluating sytematic uncertainties

I Think carefully about the whole experiment
I Particularly any numbers applied to the data

I Efficiencies, calibration etc.

I Study what effect these have

I If the effect is small then apply a systematic uncertainty to incorporate this

I If the effect is large then it should be corrected for and an uncertainty introduced for
the correction

I Often there is a trade off between statistical and systematic uncertainties
I Optimal point statistically is S/

√
S + B but you may want to be tighter or looser than

this
I How much freedom do you give to your model
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How do we do quote systematic uncertainties?

Example

I We have some data we’ve selected

I We have a model we’ve constructed to
describe the data

I Perform an NLL or χ2 fit

I Get statistical uncertainty

I Systematic? mass
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How do we quote systematic uncertainties?

Method 1 - add in quadrature

I Estimate the size of various systematic uncertainties

I Add them in quadrature

I Sometimes this is not possible (or at least difficult) e.g. limit setting

Method 2 - incorporate in the model

I Estimate the size of various systematic uncertainties

I Add terms to your likelihood which parametrise your “ignorance”

I Profile likelihood

I Also tells you how well your data “agree” with the systematic (nuisance parameter
pull)

I Sometimes this is not possible (or at least difficult) e.g. complicated fits

L(θ, ν) = Px (x |θ, ν)Py (y |ν)
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Evaluating systematic uncertainties

I Look at difference between data with guessed effect and without
I Generate MC with the effect in and assess the average difference when extracting

using the nominal model
I very common and well accepted

I Use a control channel

I Use simulation

I Use some data driven method

There is no right way

I There are just come commonly used / accepted methods

I If you find a better one then inform the community
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Evaluating systematic uncertainties

I In general once you have a source of systematic uncertainty we want to know how
does a change from this effect alter my result

I In other words we want to know ∆x̂
∆s

for our measured quantiy, x̂ and a systematic
effect, s

I Then we can evalute the systematic error:

σx̂ =

(
∆x̂

∆s

)
σs

I The differential ∆x̂
∆s

can be calculated by
generating pseudo-data

I Make a change ∆s , generate toys,
calculate the effect on x̂

I Often knowledge of σs is difficult
I E.g. size of uncertainty in theoretical

prediction from factorisation assumption?

Δs"

Δx"
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Some examples

I Systematics are difficult
I If you say that you like them people will think you’re weird
I They usually take up the most time for a precision analysis (the selection, fitting etc.

are easy in comparison)

I There is no common / predefined approach
I Many experiments have guidelines or common methods for particular types of

systematic

I Most textbooks only mention them passingly

I Of course this makes it rather difficult to teach

I I will try and cover a few basic examples which are common to HEP
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Efficiency correction

Measure the branching ratio of a decay
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I Have determined the efficiency of all
selection criteria from MC simulation,
ε = 10± 1%

I Including detector acceptance, trigger and
selection requirements

I Measured the luminosity as 4 fb−1 ± 4%

I Know the cross section for producing such
particles in my accelerator, xs ± σxs

Result

B = X ± σstat ± σsyst

I Statistical uncertainty from number of events (propagated from σNS )

I Systematic unceratinty propagated from ε, luminosity, cross section
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Efficiency correction

I Sometimes can be more complicated
I Not correcting a number but instead a distribution
I For example extracting decay time acceptance from MC
I Often incorporate into PDF (don’t change the data)

P = p(t)× ε(t)

I For the systematic assess what happens with decay time acceptance distribution

0 5 10 15 20 25 30 35 40 45 50

E
ve

nt
s 

/ (
 2

 )

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Decay Time Acceptance

0 5 10 15 20 25 30 35 40 45 50

P
ro

je
ct

io
n 

of
 

0

0.01

0.02

0.03

0.04

0.05

True Decay Time Distribution

0 5 10 15 20 25 30 35 40 45 50

E
ve

nt
s 

/ (
 2

 )

0

200

400

600

800

1000

Observed Decay Time In Data

Matthew Kenzie (CERN) Precision Measurements School Systematic Uncertainties



3. Evaluating systematic uncertainties 23/47

Efficiency systematic

Checks
These check for mistakes - do not take their difference in quadrature as a systematic

I Fit for a known lifetime in a control channel

I Tighten / loosen cuts which affect the lifetime acceptance, does this change the
result

I Try and check consistency with a data driven method (e.g. “swimming” in LHCb)

Systematics

I How can my assumed shape of the acceptance be different from the truth?

I Consider a correction for data / MC differences and resulting systematic uncertainty

I What is my decay time resolution?
I Compute the outcome of their effect with toy MC

I Generate toys from an “extreme” case, fit back with the nominal model and examine
the pull

I Even better let the decay time acceptance have some freedom in the fit - very
difficult
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Energy scale/resolution

New particle mass measurement

I Find new resonance in µµ invariant mass spectra

I Want to measure its mass

I Fit data with an exponential (background) + Gaussian (signal)

I Stat only: m = 5343.0± 3.4 GeV/c2
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Energy scale/resolution

Systematic uncertainties

I Energy scale calibration (J/ψ → µµ)

I Energy scale linearity (from m(J/ψ ) to
m(newparticle))

I These could be propagated through to
the effect on the energy of the muon
to the mass of the resonance and
added in quadrature

I Or add terms to the likelihood:

µ = µfit+G(∆µcalib, σcalib)+G(0, σlinear )

I Profile likelihood

I Uncertainty increases from more
freedom in the fit

I E.g. case of energy scale and
resolution uncertainty from two
photons to Higgs mass
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Model uncertainties

I These can often be large
I For example I have a large background

which I model with an exponential
I How do I really know it’s an

exponential?

I This can have a large effect on the
signal yield
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Model uncertainties

I This is something you cannot correct for
I Common thing to do is add a large systematic from the pull plots shown above

I I.e. generate from one model and fit back with a bunch of others
I Look at the spread in these and use this as a systematic

I However there are some alternative methods
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Concept of a nuisance parameter

Consider a simple situation:
I Fit a simple Gaussian signal and exponential background model to data with

I one parameter of interest (observable) - e.g signal yield, x
I one nuisance parameter - e.g. background exponential slope, θ
I all other parameters fixed

1. Scan Λ = −2LL of parameter x whilst
profiling θ
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Concept of a nuisance parameter

I Now imagine the background parameter is perfectly known
I fix nuisance parameter which now has no variation
I equivalent to the statistical only error

2. Fix θ to it’s best fit value

I blue line
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Concept of a nuisance parameter

I What about if we fix the background parameter to some other value?
I this gives some other curve
I not necessarily near the minimum

3. Fix θ to a random value

I red dashed line
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Concept of a nuisance parameter

I Can do this for a few different values of the background parameter

2. Fix θ to a few random values

I red dashed lines
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Concept of a nuisance parameter

I And even more values...

2. Fix θ to a few random values

I red dashed lines
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Concept of a nuisance parameter

I If you draw the minimum contour around all of the red dashed lines you begin to
recover the original curve

I In this case it doesn’t matter because θ is a continuous nuisance parameter
I But if we have a parameter that can ONLY take discrete values then we can make a

profile likelihood in this way
I For example we have ten different models (we can label them as having discrete value of a

nuisance parameter n = 1 − 10)

2. Draw minimum “envelope”

I green line
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Concept of a nuisance parameter

I Clearly the more discrete values we sample the closer we get to the original

2. Draw minimum “envelope”

I green line
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Concept of a nuisance parameter

I Clearly the more discrete values we sample the closer we get to the original

I IMPORTANTLY - you can mix discrete nuisance parameters with continous ones

2. Draw minimum “envelope”

I green line
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Back to the more realistic example

I A small signal component

I Some realistic (and one unrealistic) background models

I Do a profile scan for each model and take the envelope

I Choices which are very similar have no effect
(Laurent and Power Law)

I Choices which are bad have no effect
(Polynomial)

I Choices which compete increase the uncertainty
(Exponential)

I Uncertainty is increased if models are different

I NOTE: No explicit model choice has to be made

I We don’t actually care what model “is the best”
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Bias and Coverage properites

Generate toy MC from various background hypotheses and then refit to asses the bias
(using the pull) and the coverage

Bias:
I When you generate and fit

back with the same (or
similar) background function
the bias is neglible (green
points in top panel, red
points in second panel)

I When you generate and fit
back with different functions
the bias is large (red points
in top panel, green points in
second panel)

I Using the profile envelope
(black points) you find a
small bias for all cases
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Bias and Coverage properites

Generate toy MC from various background hypotheses and then refit to asses the bias
(using the pull) and the coverage

Coverage:
I When you generate and fit

back with the same (or
similar) background function
the coverage is good (green
points in top panel, red
points in second panel)

I When you generate and fit
back with different functions
there can be under-coverage
(red points in top panel,
green points in second
panel)

I Using the profile envelope
(black points) you recover
good coverage for all cases
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Correlation and covariance

In most cases we present our results as Gaussian observables

I We present our observables in the form:
v = XX ± YY (stat)± ZZ (syst)

I For n > 1 dimensions should also provide correlation matrices:
I Can calculate sytematic correlations using toys
I Generate with one effect and caluclate how this correlates with another
I Most people don’t bother doing this (sad face)

Central values and uncertainties (stat and syst)

x1 = v1 ± σstat
1 ± σsyst

1 (1)

x2 = v2 ± σstat
2 ± σsyst

2 (2)

... (3)

xn = vn ± σstat
n ± σsyst

n (4)

Statistical correlation
1 ρ1,2 ... ρ1,n

ρ2,1 1 ... ρ2,n

... ... ... ...
ρn,1 ρn,2 ... 1


Systematic correlation

1 ρ1,2 ... ρ1,n

ρ2,1 1 ... ρ2,n

... ... ... ...
ρn,1 ρn,2 ... 1
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Building a covariance matrix

Correlation, ρ, dictates the correlation between uncertainties.
Covariance, C, is the full error matrix
Convert from a correlation matrix to a covariance matrix Ĉ = ~σρ̂~σ

Ĉ =

(
σ2

i σiσjρij

σiσjρij σ2
j

)
=

(
σi 0
0 σj

)
︸ ︷︷ ︸

σ̂

(
1 ρij

ρij 1

)
︸ ︷︷ ︸

ρ̂

(
σi 0
0 σj

)
︸ ︷︷ ︸

σ̂

(5)

Convert from covariance matrix to correlation matrix ρ̂ = σ̂−1Ĉσ̂−1

ρ̂ =

(
1 ρij

ρij 1

)
=

(
1/σi 0

0 1/σj

)
︸ ︷︷ ︸

σ̂−1

(
σ2

i σiσjρij

σiσjρij σ2
j

)
︸ ︷︷ ︸

Ĉ

(
1/σi 0

0 1/σj

)
︸ ︷︷ ︸

σ̂−1

(6)

Note: σ̂−1 = inv

(√
diag(Ĉ)

)
Remember covariance matrices add linearly (not in quadrature)
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Propagation of uncertainty

Assuming no correlations:

x = f (a, b, c)

σx =

√(
∂f

∂a

)2

σ2
a +

(
∂f

∂b

)2

σ2
b +

(
∂f

∂c

)2

σ2
c (7)

For two correlated variables:

x = f (a, b)

σx =

√(
∂f

∂a

)2

σ2
a +

(
∂f

∂b

)2

σ2
b + 2

∂f

∂a

∂f

∂b
σaσbρab

In general....
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Transforming to another variable

Completely general

I Have a vector of observables, ~A, and a vector of functions which depend on the
elements of ~A, ~X (~A).

I Uncertainties on the vector ~A are described by the covariance matrix CA.

I We would like to know the covariance matrix after transformation by ~X .

I The Jacobian matrix will transform the errors (to first order) following a Taylor
expansion.

~X (~A + δ ~A) = ~X (~A) +
∂ ~X

∂ ~A

∣∣∣∣
~A

δ ~A +O(δ ~A2)

∂~X

∂~A
is simply the Jacobian matrix, J .

I To transform from the covariance in ~A to the covariance in ~X then transform via the
Jacobian:

C~X = JC~AJ
T
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Transforming to another variable

I General formula:

C~X = JC~AJ
T, where J =

∂ ~X

∂ ~A

∣∣∣∣
~A

I For two variables:

x = x(a, b)

y = y(a, b)

Cxy =

(
∂x
∂a

∂x
∂b

∂y
∂a

∂y
∂b

)(
σ2

a σaσbρab

σaσbρab σ2
b

)(
∂x
∂a

∂y
∂a

∂x
∂b

∂y
∂b

)

Matthew Kenzie (CERN) Precision Measurements School Systematic Uncertainties



4. Correlation, covariance and all that stuff 45/47

Transforming to another variable

Another example

I We measure two observables a, b with σa, σb and ρab

I Transform to x = a(1 + b) and y = a(1− b)

I Know that:

J =

(
∂x
∂a

∂x
∂b

∂y
∂a

∂y
∂b

)
=

(
1 + b a
1− b −a

)
, Cab =

(
σ2

a σaσbρab

σaσbρab σ2
b

)
I And so:

Cxy =

(
1 + b a
1− b −a

)(
σ2

a σaσbρab

σaσbρab σ2
b

)(
1 + b 1− b
a −a

)
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Summary

I Systematics are difficult

I There is no common approach so it takes some common sense and experience
I There is often confusion between:

1. A systematic effect
2. A systematic uncertainty
3. A check for consistency

I The most robust ways of evaluting systematic are by generating toys
I Incorporate nuisance parameters into your likelihood where possible

I This allows the data the freedom to pick

I Consider carefully how you evaluate uncertainties from model choices you might
make
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