

APPEC Technology Forum 2015 - Low light-level detection in astroparticle physics and in medical application

22-23 April 2015 Carl Friedrich von Siemens Foundation Europe/Berlin timezone

Developments in PMTs for flourescence measurements of air showers at the Pierre Auger Observatory Julian Rautenberg

Pampa Amarilla **Province of Mendoza** 1400 m a.s.l. 35° South, 69° West Colora PIERRE

ile //

Pierre Auger Collaboration >490 scientists from 17 countries

Surface Detector (SD)

100

Fluorescence Detector (FD)

Minas El Sost

LOMA AMAREL

Salinas El Diamante Va. Veraniega

Ea. La Trintrica

Co. TRINTRICA

Co.

COLORADO △ 2129

mbalse

l Nihuil

178

First Part: PMTs for Fluorescence Detection

- optimized for fluorescence light between 300 nm and 400 nm
- camera: 440 photomultiplier (PMT), Photonis hexagonal XP 3062
- transition between PMTs is covered by light guides

PMTs @ Pierre Auger Observatory

First Part: PMTs for Fluorescence Detection

High Elevation Auger Telescopes (HEAT)

- Photonis stopped delivery of ordered XP 3062 (hexagonal)
- Replacement of one camera (440 PMTs) with round entry window

First Part: PMTs for Fluorescence Detection

	XP3062	Ham. R9420-100	
Faceplate	hexagonal	round	
Photocathode	bialkali	super-bialkali	
Window	lime glass borosilicate		
Dynode structure/stages	lin. focused/ 8	lin. focused/ 8	
Gain	2.6×10^{5}	$3.7 imes 10^5$	
Supply Voltage [V] typ.	1100	1300	
max.	1300	1500	
Dark current [nA] typ.	1	10	
max.	20	100	
Cathode sens. [mA/W]	90	110	
Q.E.at peak wavelength	27%	35%	
Rise Time [ns]	3	1.6	

High Elevation Auger Telescopes (HEAT)

- Photonis stopped delivery of ordered XP 3062 (hexagonal)
- Replacement of one camera (440 PMTs) with round entry window

Winston Cones: Material

- light collectors to cover dead space between PMTs
- transition from hexagonal to round structure
- material: Alanod 4300UP (high reflectivity in UV range, HISCORE)
- manufacurer of segmented cone: Alux Luxar (Langenfeld, GER)

Winston Cones: Design

- winston cone geometry given by aperture size
- modification for hexagonal entrance aperture
- problem 1: material only bendable in 2D
 - else loss of reflectivity
- problem 2: hexagon shape on sphere varies up to 1mm

PMTs @ Pierre Auger Observatory

Winston Cones: Lab Measurements

- first measurements with new Winston Cones
- scan of QE with 405 nm laser
- stepsize 1 mm, spotsize < 1.1 mm
- efficiency increase of $\sim 20\%$

Winston Cones: Test Installation

- prototype with 48 PMTs + Winston Cones installed in one camera
- plastic plate to hold Winston cones
 - produced with 3D printer to fit
 - camera body shape
 - screwed to camara body
 - Winston cones glued with epoxy
- same focal plane

PMTs @ Pierre Auger Observatory

New PMTs

	Phot. XP3062	Ham. R9420-100	R11920-100
Faceplate	hexagonal	round	hem./frosted
Photocathode	bialkali	super-bialkali	super-bialkali
Window	lime glass	borosilicate	borosilicate
Dynode structure/stages	lin. focused/ 8	lin. focused/ 8	lin. focused/ 8
Gain	2.6×10^{5}	3.7×10^{5}	$4 imes 10^4$
Supply Voltage [V] typ.	1100	1300	1300
max.	1300	1500	1500
Dark current [nA] typ.	1	10	5
max.	20	100	20
Cathode sens. [mA/W]	90	110	110
Q.E.at peak wavelength	27%	35%	35%
Rise Time Insl	3	1.6	2.6

New PMTs

R11920 + Winston, 405 nm

- Higher QE of 40% (R11920-100) compared to 35% (R9420-100)
- Spherical window increases homogenity of winston-cone efficiency

New PMTs

Fluorescence with SiPM

R

time mean

Fluorescence with SiPM

PMTs @ Pierre Auger Observatory

Auger-Upgrade

Auger Key Question:

23.04.2015, J. Rautenberg

PMTs @ Pierre Auger Observatory

Auger Key Question:

Auger Key Question:

Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays (UHECR 2014) Auger-Upgrade: Event-Wise Composition Sensitivity at highest Energies

Composition sensitivity: EM/µ ratio

- Add (thin) Scintillator on top of Surface Detectors for EM component
- Dynamic Range: peak signal in a 4m² SSD at 200m from the core of a shower at 10²⁰ eV and 38 degrees zenith angle is expected around 12,000 MIPs

23.04.2015, J. Rautenberg

Auger Upgrade

Auger Upgrade:

- Small Scintillator with wace-length shifting fiber to one PMT
- Main requierement:
 - sensitivity above 500nm
 - Large dynamic range, linearity
- Candidates so far:
 - R9420
 - R8916

Dynamic range required: 20000 MIP

This can be achieved with two channels and a PMT linear up to 160 mA

Noise-level on FE-Board

Saturation of Surface Detectors

Saturation of Surface Detectors

• Add a "small" PMT to increase dynamic range of linear response

- New integrated SD-Electronic at higher sampling rate (120MHz)
- New HV also for existing 9" Photonis PMTs

Auger Upgrade

PMT with broad linearity and good QE above 500nm

Far future: GCOS

p-astronomy with sources

- Global, few sites, N+S
- ca. 90,000 km² (x30 Auger)
- FD with SiPMs?
- No FD at all?
- Optimal detector for composition-sensitivity?

Schedule

Specifications

1700 Photosensors 22–38 mm diameter for scintillator readout and 1700 Photosensors 22 mm diameter to increase dynamic range of WCD in addition to the three 9 inch PMTs per detector.

Auxillary electronics

Re-design of readout-electronics and replacement of 1700 times 3 HV modules for operation of the existing PMTs in WCDs as well as 3400 HV modules for the afore mentioned smaller PMTs.

Schedule

Requirements

Design phase

Immediate selection of optimal photo-detector

- for scintillator optimized for green light,
- for Cerenkov low priority on sensitivity since overlap with large PMTs.

Priority on high linearity.

Prototyping phase

- reliable and well tested products for prompt product readiness,
- interaction with companies for available prototypes or possible developments on short timescale.

