Low background single photon detection with a transition-edge sensor for ALPS II

N. Bastidon, Institut für Experimentalphysik, Hamburg University for the ALPS II collaboration

23/04/2015 APPEC Technology Forum 2015

Any Light Particle Search

Any Light Particle Search experiment looks for Weakly Interacting Sub-eV Particles also called WISPs.

Axion → Possible solution for the smallness of the CP violation in QCD

→ Hints from astrophysics observations

Light shining through the wall experiment: Photon-mixing + Additional light boson → Re-appearance of photons behind the barrier

> 1064 nm laser → 1.17 eV photons 1 photon every few hours

ALPS II

Technical challenges for the detector

⇒ Low energy (1.17 eV) and low rate (1 photon every few hours).

1) High efficiency

2) Low dark count rate

- 3) Long-term stability
- 4) Good energy resolution
- 5) Good time resolution

CCD in ALPS II

Von Seggern JE, *Constraining Weakly Interacting Slim Particles with a Massive Star and in the Laboratory*, Dissertation, Univ. Hamburg, 2014

Transition Edge Sensor

TES

Two channels module (3 cm * 3 cm)

Tungsten chip ($25 \times 25 \mu m$, 20 nm)

Tc ≈ 140 mK

A.E. Lita, A.J. Miller, S.W. Nam, *Counting nearinfrared single photons with* 95 % *efficiency*, Opt Expres. 2008

	TES:
SQUID	Microcalorimeter
	measuring the
	temperature
	difference ∆T of
	the absorber
	material.

NIST W-TES		
Efficiency (1064 nm)	95 %	
Dark current	$10^{-4} \mathrm{sec}^{-1}$	
Long term stability	\checkmark	
Good energy resolution	< 8%	
Good time resolution	\checkmark	

Photon absorption to signal output

7

TES environment in ALPS II

CLOSED

Adiabatic Demagnetization Refrigerator (ADR)

OPENED

ADR cryocooler

Cool-down:

-Length in time only limited by maintenance work and change of the setup. - Baseline temperature of 2.5 K.

Recharge:

-Last approximately 24 hours. - Temperature of 80 mK at the detector level.

D. Wernicke , Entropy GmbH: Closed-cycle cryostats for the Kelvin and milli Kelvin temperature range

Detector characterization

Pulse shape TES linearity TES stability Background Quantum efficiency

Single photon events

Linearity

Average pulse height in units of voltage output as a function of photon energy for the TES. The dashed line is a fit to the first three points.

Stability

The TES bias current equivalent to Ro= 30 % R_{normal} as a function of time after the beginning of a recharge.

→Stable during a recharge.

→ Stable during one cool-down.

→ Stable during different cool-

downs.

→ Not depending on operator (adjustment method).

Background

Detection efficiency

Adiabatic Demagnetization Refrigerator

Low-fluxes detectors

 Comparison of a few lowtemperature detectors
Other experiments using TESs

Comparison of a few low-fluxes detectors

	QE (%)	Dark count (s-1)	integration	
CCD (NIR)	1.2	8·10 ⁻⁴ per pixel	difficult	
TES	95	1·10 ⁻⁴		PMT
РМТ	25	0.5	easy	spot

The TES and CCD weak point comes from the necessity of a good beam focusing on the chip.

J. E. von Seggern, Overview of low-fluxes detectors (2013), arXiv:1310.0660v1

ACT – Atacama Cosmology Telescope

(b) Gold ring TES Bias leads Thermal link 0.1 mm

(Source: http://arxiv.org/pdf/ 1008.0342v2.pdf)

(Source: http://www.astro.puc.cl)

Material	Molybdenum-Gold (MoAu) bilayer
Size	75 × 75 μm²
T operation	300 mK
Setup	3 times 32x32 arrays of TESs
Wavelength of interest	mm

ATHENA - Advanced Telescope for High Energy Astrophysics

(Source: http://athena2.irap.omp.eu)

eu)	
Material	Molybdenum-Gold (MoAu) bilayer
Size	250 μm²
T operation	50 mK
Setup	An array of 3840 TESs
Wavelength of interest	X ray

X-ray entrance Cryoperm shield @4K

Thermal shield @600mK

TES sensor array @50mK Niobium shield @50mK 1st stage readout @50mK Thermal insulating suspension Electrical signal harness

Filter

Filter

Summary

• ALPS II experiment (DESY, Hamburg) follows the light-shining through the wall concept.

- A tungsten Transition Edge Sensor operated below 100 mK has been successfully used to detect singlephotons in the near-infrared.
- The low rate and energy represent lots of challenges. Our TES will rise up to them.

ALPS IITDR: arXiv:1302.5647

Characterization, 1064 nm photon signals and background events of a tungsten TES detector for the ALPS experiment: arXiv:1502.07878v1

Outlook

→ Finalizing characterization

→ Trying to reduce the background even further than what was already obtained (blackbody photons, intrinsic background,...).

 \rightarrow First ALPS II data taking in 2016.

Thank you for your attention !

